ACKNOWLEDGEMENTS
This work is part of the GO0D MAN
project that has received funding from
the European Union’s Horizon 2020
research and innovation programme
under grant agreement N
o
723764.
REFERENCES
Aazam, M., Zeadally, S., and Harras, K. A. (2018). Deploy-
ing fog computing in industrial internet of things and
industry 4.0. IEEE Transactions on Industrial Infor-
matics, 14(10):4674–4682.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,
M., and Ayyash, M. (2015). Internet of things: A
survey on enabling technologies, protocols, and ap-
plications. IEEE Communications Surveys Tutorials,
17(4):2347–2376.
Bauer, H., Baur, C., Camplone, G., and et. al. (2015). Indus-
try 4.0: How to Navigate Digitization of the Manufac-
turing Sector. Technical report, McKinsey Digital.
Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014).
Fog Computing: A Platform for Internet of Things and
Analytics, pages 169–186. Springer.
Breivold, H. and Sandstr
¨
om, K. (2015). Internet of things
for industrial automation – challenges and technical
solutions. In 2015 IEEE Int’l Conf. on Data Science
and Data Intensive Systems, pages 532–539.
Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M.,
and Buttazzo, G. (2017). The Challenge of Real-time
Multi-agent Systems for Enabling IoT and CPS. In
Proc. of Int’l Conf. on Web Intelligence, pages 356–
364. ACM.
Chiang, M. and Zhang, T. (2016). Fog and IoT: An
Overview of Research Opportunities. IEEE Internet
of Things Journal, 3(6):854–864.
CISCO (2015). Fog Computing and the Internet of Things:
Extend the Cloud to Where the Things Are. Technical
report, Cisco, white paper.
Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N., and Hu,
B. (2015). Everything as a service (xaas) on the cloud:
origins, current and future trends. In 8th IEEE Inter-
national Conf. on Cloud Computing, pages 621–628.
Fei, X., Shah, N., Verba, N., Chao, K.-M., Sanchez-
Anguix, V., Lewandowski, J., James, A., and Usman,
Z. (2019). Cps data streams analytics based on ma-
chine learning for cloud and fog computing: A survey.
Future Generation Computer Systems, 90:435 – 450.
Geissbauer, R., Vedso, J., and Schrauf, S. (2016). Industry
4.0: Building the digital enterprise. Technical report,
PwC.
Khaitan, S. K. and McCalley, J. D. (2015). Design tech-
niques and applications of cyberphysical systems: A
survey. IEEE Systems Journal, 9(2):350–365.
Lee, J., Davari, H., Singh, J., and Pandhare, V. (2018). In-
dustrial artificial intelligence for industry 4.0-based
manufacturing systems. Manufacturing Letters,
18:20–23.
Leit
˜
ao, P., Colombo, A., and Karnouskos, S. (2016). In-
dustrial automation based on Cyber-Physical Systems
technologies: Prototype implementations and chal-
lenges. Computers in Industry, 81:11–25.
Leit
˜
ao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T.,
and Colombo, A. W. (2016). Smart agents in indus-
trial cyber-physical systems. Proceedings of the IEEE,
104(5):1086–1101.
Li, L., Ota, K., and Dong, M. (2018). Deep learning for
smart industry: Efficient manufacture inspection sys-
tem with fog computing. IEEE Transactions on In-
dustrial Informatics, 14(10):4665–4673.
Lu, Y. (2017). Industry 4.0: A survey on technologies, ap-
plications and open research issues. Journal of Indus-
trial Information Integration, 6:1–10.
Mell, P., Grance, T., and et al. (2011). The NIST definition
of cloud computing.
Ota, K., Dao, M. S., Mezaris, V., and Natale, F. G. B. D.
(2017). Deep learning for mobile multimedia: A
survey. ACM Trans. Multimedia Comput. Commun.
Appl., 13(3s):34:1–34:22.
Pico-Valencia, P. and Holgado-Terriza, J. A. (2018). Agen-
tification of the internet of things: A systematic lit-
erature review. International Journal of Distributed
Sensor Networks, 14(10).
Ren, L., Zhang, L., Wang, L., Tao, F., and Chai, X. (2017).
Cloud manufacturing: key characteristics and applica-
tions. International Journal of Computer Integrated
Manufacturing, 30(6):501–515.
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646.
Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D. (2018).
Deep learning for smart manufacturing: Methods
and applications. Journal of Manufacturing Systems,
48:144–156. Special Issue on Smart Manufacturing.
Wang, S., Wan, J., Zhang, D., Li, D., and Zhang, C.
(2016). Towards smart factory for industry 4.0: a
self-organized multi-agent system with big data based
feedback and coordination. Computer Networks,
101:158–168.
Wooldridge, M. (2002). Introduction to Multiagent Systems,
volume 30. John Wiley and; Sons, Inc.
Wuest, T., Weimer, D., Irgens, C., and Thoben, K.-D.
(2016). Machine learning in manufacturing: advan-
tages, challenges, and applications. Production &
Manufacturing Research, 4(1):23–45.
Xiao, Z. and Xiao, Y. (2013). Security and privacy in cloud
computing. IEEE Communications Surveys Tutorials,
15(2):843–859.
Xu, L. D., He, W., and Li, S. (2014). Internet of things in
industries: A survey. IEEE Transactions on Industrial
Informatics, 10(4):2233–2243.
ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics
454