
Exploration and Mining of Source Code Level Traceability Links on
Stack Overflow

András Kicsi1, Márk Rákóczi1 and László Vidács2

1Department of Software Engineering, University of Szeged, Szeged, Hungary
2MTA-SZTE Research Group, University of Szeged, Szeged, Hungary

Keywords: Traceability, Testing, Test-to-Code.

Abstract: Test-to-Code traceability is a valid problem of software engineering that arises naturally in the development of
larger software systems. Traceability links can be uncovered through various techniques including information
retrieval. The immense amount of data shared daily on Stack Overflow behaves similarly in many aspects. In
the current work, we endeavor to discover test-to-code connections in the code shared and propose some
applications of the findings. Semantic connections can also be explored between different software systems,
information retrieval can be used both in cross-post and in cross-system scenarios. The information can also
be used to discover new testing possibilities and ideas and has the potential to contribute to the development
and testing of new systems as well.

1 INTRODUCTION

Software testing is an integral part of software engi-
neering and is considered invaluable in most cases in
both the development and maintenance phase. Proper
testing practices are well defined and can greatly con-
tribute to the quality of a software product. As tests
are written routinely, larger software systems can ac-
cumulate tens of thousands of test cases. Lacking
proper documentation, the vast amount of tests can
results in difficulties the maintenance as for example
during bug localization we have to possess adequate
information on what the test is meant to assess. This
problem is called test-to-code traceability which al-
ready has a well-established literature. Coding prac-
tices like maintaining good naming conventions can
make this problem nearly a trivial task, but in reality,
most systems lack this kind of foresight in advance.

Stack Overflow is currently the most popular
question and answer website throughout software de-
velopment communities and is commonly considered
an invaluable asset for developers. It represents an
immense amount of data that is freely accessible via
the internet. Users frequently share not just textual
questions and answers but also code snippets that con-
tain whole methods, stack trace messages, and other
valuable information. It is also not uncommon to
find the exact same code in a faulty form as part of
a question and in its correct form given by an answer.

Different parts of the same software can also appear
in different questions or answers, which means that
we could even find several valid traceability links be-
tween posts, or even at different questions.

SOTorrent (Baltes et al., 2019) is a publicly avail-
able dataset assembled for a mining challenge that in-
vestigated the exploration possibilities inside this vast
amount of data. The dataset contains extensive data
on ten years of Stack Overflow activity between 2008
and 2018 that encompasses 40.606.950 questions and
answers in total with version information that include
hundreds of millions of versions. The goal of the
dataset is to provide structured access to Stack Over-
flow post data and versions. Although the origin soft-
ware system is not always identifiable and the valid
traceability links are not noted explicitly in the data,
it could still provide ample opportunities for explo-
ration and experimentation with different approaches
even from a traceability aspect.

The paper is structured as follows. Section 2 in-
troduces our approach and Section 3 describes the
techniques used in computing semantic similarity be-
tween methods. Section 4 displays the results and
provides brief discussion while Section 5 overviews
related literature. The paper concludes with Section 6.

Kicsi, A., Rákóczi, M. and Vidács, L.
Exploration and Mining of Source Code Level Traceability Links on Stack Overflow.
DOI: 10.5220/0007981003390346
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 339-346
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

339

2 GOALS AND METHOD

We decided to approach this data from a test-to-code
traceability point of view with an exploratory mind-
set and strive to uncover some of the traceability links
that lie in the code published on Stack Overflow. Our
previous experiments (Csuvik et al., 2019; Kicsi et al.,
2018) deal with software code handled as text as an
information source for traceability research. In the
current work, we explore the depths of Stack Over-
flow using similar assets, working with Doc2Vec and
Latent Semantic Indexing (LSI).

��������� ��������
�������

��������
����
���
���

‘����
	��
���

������
�������

������	����������

���������	�����

�����
������
����������

����	����
��
����������

����������
�����	���
����

������	�����������

�����
������

��������
���������

��
��
����
���������

�������	�������������

 ­���	����	�������

���­���	����������	����

�­���­���	�����

CamelCase

������� ���

��
�������	�������
���

��

Figure 1: Steps taken in processing the Stack Overflow
posts.

Figure 1 shows how the data went through sev-
eral preparation and filtering steps. The input itself
was the question and accepted answer of each Stack
Overflow question in SOTorrent. Firstly, since in the
current scope we only work with the information in
software code we filter out the posts without any code
segments. This is an easy task since code segments
are labeled within SOTorrent itself. We decided to
only consider the latest version of each post since var-
ious versions do not have a high likelihood of greatly
aiding traceability. In the current experiment we de-

cided to work with Java code only, thus we limited the
posts to the ones containing java in their tags. These
rather generous filtering methods still produced more
than 1.5 million posts to consider, and each post could
still contain several code segments wich can even
have multiple methods. For the extraction of these
methods, we used regular expressions that rely on the
typical structure of a Java method, thus also filtering
out stack trace segments, system messages, and var-
ious code segments written in other languages. The
extracted methods were split into two categories, we
considered a method either a test case or production
code. A method was recognized as a test case if it con-
tains either an assert statement, a JUnit annotation, or
has test in its name. Overly short methods seemed to
cause a high amount of noise in the results because of
their high resemblance to each other, thus we also fil-
tered out the methods that contained no more than 50
characters. These steps still resulted in tens of thou-
sands of test methods and hundreds of thousands of
production methods. We also applied textual prepro-
cessing with lower casing, camel case splitting using
regular expressions and stopword filtering to filter out
several words that are highly common in Java. The
resulting text was the input of similarity measurement
conducted either by LSI or Doc2Vec.

Most of the traceability links discovered in Stack
Overflow are nearly impossible to validate with total
certainty, in most cases we can only assess whether
a test case seems to aim to test a production code
method. As we rely on semantic similarity, it is highly
likely that we would get at least semantically similar
pairs. Opposed to the traditional scenario of test-to-
code traceability, easing the maintenance of systems
is not a realistic goal here. Rather we adopted a more
exploratory point of view and also did experiments
with data mining in mind.

Stack Overflow contains huge amounts of soft-
ware code potentially useful for developers. The topic
of testing is not usually distinguished in the questions.
Although some questions also contain test or testing
in their tags, this is not mandatory for testing related
questions. Furthermore, not every post that contains
tests considers testing as its main topic. With seman-
tic similarity, we could mine the testing posts related
to our current interests more reliably than a simple
search. The similarity measure can be applied on any
text defined by a user which can be formatted as sim-
ple natural language text (for example "admin user lo-
gin database") or whole methods for which we could
either ask the most similar test cases or a test that
should be very similar to what could test the method.
This can be useful for gathering ideas on what to test
our methods for as well as provide insights on how

ICSOFT 2019 - 14th International Conference on Software Technologies

340

@Test
p u b l i c vo id t e s t H a n d l e R e q u e s t V i e w () t h r ow s E x c e p t i o n {

H e l l o C o n t r o l l e r c o n t r o l l e r = new H e l l o C o n t r o l l e r () ;
ModelAndView modelAndView = c o n t r o l l e r . h a n d l e R e q u e s t (n u l l , n u l l) ;
a s s e r t E q u a l s (" h e l l o . j s p " , modelAndView . getViewName ()) ;

}

Listing 1: An example test case.

p u b l i c ModelAndView h a n d l e R e q u e s t (H t t p S e r v l e t R e q u e s t r e q u e s t ,
H t t p S e r v l e t R e s p o n s e r e s p o n s e) t h ro ws S e r v l e t E x c e p t i o n , IOExcep t ion {

l o g g e r . i n f o (" R e t u r n i n g h e l l o view ") ;
r e t u r n new ModelAndView (" h e l l o . j s p ") ;

}

Listing 2: The production method found most similar to the code of Listing 3.

other developers do it. Since Stack Overflow repre-
sents the greatest current community database of such
information, we consider this a worthwhile goal.

To summarize our current research goals, we pro-
pose the following research questions:
RQ1: While the current method is not the conven-
tional use of traceability, can it still produce valid
traceability links?
RQ2: To what extent are the semantic connec-
tions recoverable from source code with different ap-
proaches?

3 BACKGROUND

As our previous work (Csuvik et al., 2019) estab-
lished, both LSI and Doc2Vec can have a valid place
in uncovering traceability links from source code han-
dled as a source of semantic information. Here we
provide a brief overview of these methods. We used
the Gensim (Rehurek and Sojka, 2010) representation
of both techniques in this task.

3.1 Doc2Vec

Doc2Vec was introduced by Google’s develop-
ers (Mikolov et al., 2013) and can be considered an
extension of Word2Vec commonly used in various
machine learning approaches in recent years. It op-
erates with vector representations of words that are
transformed to a lower number of dimensions via neu-
ral networks. The hidden layer has fewer neurons
than the input and output layers and the weights of
the hidden layer provide the word embedding out-
put we need. Doc2Vec differs from Word2Vec only
in also adding a unique identifier for each document
to the input layer, thus distinguishing different docu-
ments (like sentences, articles or software code meth-

ods) which permits a word to have a different meaning
in different contexts. For our results shared in this pa-
per, we set the vector size to 300 and the model was
trained for 5000 epochs.

3.2 Latent Semantic Indexing

LSI (Deerwester et al., 1990) is an older technique
which has been used as mainstream in many tasks
of semantic analysis. It is often considered one of
the base techniques of many software engineering re-
search approaches that rely on information retrieval
and it is not new in traceability either (Rompaey and
Demeyer, 2009) (Kicsi et al., 2017) and even in test-
to-code traceability it is used as part of the recent
state-of-the-art techniques (Qusef et al., 2011). Simi-
larly to Doc2Vec, it relies on semantic information of
text handled as vectors and produces a more compact
form of vectors that results in the semantically more
similar documents obtaining more similar vectors.
LSI uses singular value decomposition to achieve this
task. For our results shared in this paper, we set the
num_topics parameter to 400 by which Gensim sets
the size of the intermediate matrix.

4 EXPERIMENTS AND
DISCUSSION

In our previous research (Kicsi et al., 2018), we pro-
posed dealing with the test-to-code traceability prob-
lem in a recommendation system manner for which
we provided several arguments. In our current case,
this seems even more established as there are a lot of
differences from the regular problem. We have to con-
sider several difficulties in talking about results in this
unconventional context. Since of course SOTorrent,
like real life software code, does not note traceability

Exploration and Mining of Source Code Level Traceability Links on Stack Overflow

341

method name

same post

same user

pair post

804

80 42

40

0 4

800

00

0

0

8

LSI Similarity

method name

same post

same user

pair post

32717

540 18

102

2 10

3242

00

0

0

12

Doc2Vec Similarity

Figure 2: Results relying and similarity by LSI and Doc2Vec (top 1000 most similar methods, top 5 matches considered).

information, it is not an easy task to evaluate the re-
sults. We cannot really rely on proper naming conven-
tions either for an automatized evaluation since Stack
Overflow posts do not usually contain full qualified
names either, only the names of the classes and meth-
ods the code which can have duplicates that can oc-
cur any number of times even within the same post.
Thus, we do not think a full automated evaluation can
be done in such a case. Worse yet, even manual eval-
uation seems less sure in these cases, since there is
a myriad of examples of possibly valid test-to-code
link pairs. While it would not happen in a software
system, here it is still possible to have a test case that
tests more than one production methods with the ex-
act same properties but slightly different code. Some
tested production methods could not even be accessi-
ble. A manual evaluation can look at the words and
limited context of each method but lacking any other
indicators it is still impossible for the majority of valid
traceability links to be entirely sure. Furthermore, it
is not necessary for every code segment to have valid
software code, there are many examples where for the
sake of keeping the code short and manageable, users
substitute certain parts of the code with either a com-
ment or simply natural language text.

Consider the example displayed in Listing 1, a test
case from SOTorrent. We can be fairly certain that
this test can test the proper functioning of the method
displayed in Listing 2 taken from another post of an-
other question, submitted by another user and not hav-
ing a link to any GitHub repositories. There is no real
guarantee, however, that the test case was meant to
test this specific method. What we can assess is only
that the method has the same name and number of pa-
rameters as the method under test.

There are some other insights, however, that can
indicate that a test and production method are meant
to belong together. Certain properties of a method,
like the origin post, or the author can lead to more

valid links. While these do not provide certainty as for
example one user can submit any number of different
test and production methods, they can still be used
as a tool of assessment. To do this, we introduce the
following sets:

• Same User: The pairs submitted by the same user.
• Same Post: The pairs that can be found in the

same post.
• Pair Post: The pairs that can be found at the same

question, but not the same post (we considered
only the question and accepted answers as posts).

• Method Name: The pairs that seem to follow
simple naming conventions, the name of the test
case exactly matches the name of the production
method with a "Test" added to the beginning or
the end of the name.

The pairing of the test and code methods men-
tioned in the listings above are discovered both by LSI
and Doc2Vec. Without being in any of the indicator
sets, they were ranked as some of the most similar
methods. Thus, we can provide an answer to our first
research question.
Answer to RQ1: Both LSI and Word2Vec can pro-
duce pairs that seem highly accurate even for human
observers, and even if they could not be easily recov-
ered from the structural information of the dataset.

Since providing recommendations indeed seem a
more viable case here than merely finding the sin-
gle most similar element, we decided to consider the
top 5 most similar methods for each query. Fig-
ure 2 displays how many of the pairs that scored in
the top 1000 ranked by similarity of either LSI or
Doc2Vec were found in our proposed indicator sets.
We can see a huge difference in the performance of
LSI and Doc2Vec but we have to note that a compari-
son here would not be valid. Firstly, the computation
of Doc2Vec is much more demanding on this scale,
so we decided to limit our exploration to the methods

ICSOFT 2019 - 14th International Conference on Software Technologies

342

method name

same post

same user

pair post

44713

631 59

314

2 31

4475

00

0

0

33

Calls + Doc2Vec Similarity

method name

same post

same user

pair post

45212

628 51

193

2 19

4523

00

0

0

21

Calls + LSI Similarity

Figure 3: Results relying on called method names and similarity (top 1000 most similar methods, top 5 matches considered).

of only 100.000 of randomly chosen questions, which
still took days to finish. LSI finished in about a day on
the whole dataset (with the filtering described in Sec-
tion 2), thus we included the methods of all questions.
It is not really surprising that on a much larger dataset
LSI scores less for example in finding the same user.
Secondly, it should also be noted that these indicators
do not necessarily resemble the quality of the results,
for instance, detecting pairs authored by the same user
can also stem from unique words or even coding style.
Thirdly, as it is established, finding valid test-to-code
traceability links is not our primary goal here, thus
this does not evaluate our strategy as a mining tech-
nique.

Should we aim to mine real traceability links, we
could work with a different approach. In test-to-code
traceability relying on calls made by the test case is
also one of the standard procedures. We could also
do this, and consider only the production methods
that are directly called from the test case. There is
still room for several complications that do not per-
mit this to be a foolproof approach. There are no
qualified names and we do not have access to the call
graphs either, thus this approach also seems very shal-
low. Considering a combination of this call matching
technique with our most similar test-code pairs scores
much higher on the indicator sets nevertheless, this
can be seen in Figure 3. We can see that LSI here
scores almost just as good in every set as Doc2Vec,
even though at Doc2Vec still relies on 100.000 ran-
dom questions while LSI considers every question.
This probably means that call matching negates most
of the advantage of the smaller set of Doc2Vec since
the number of calls for each test case is not fewer in
Doc2Vec’s case either. Thus, we can see that with
proper use, both LSI and Doc2Vec can contribute to
finding test-to-code traceability links that seem gen-
uine even on a larger scale.

Answer to RQ2: LSI and Doc2Vec both seem to pro-

duce a high number of test-to-code links that seem
valid according to various indicators provided by the
origin information stored in the dataset.

As our method aims to mainly serve as a mining
technique, let us consider one more example. Aim-
ing to implement a simple case of user login func-
tion we can quickly gather inspiration by using the
query "user login" on our approach and getting a list
of the semantically most similar methods, including
the example given in Listing 3 which makes the nec-
essary calls from a controller perspective for proper
authentification. A user can survey any number of
such methods and analyze them before creating his
own. In case of wondering what LoginVO can be, it
can also be submitted as a query and can be looked
into. Additionally, we can also find the most similar
tests to the "user login" query or either the code in
the listing or one created by us and get a list of tests
that were meant for a semantically similar problem.
Thus, we believe our approach can be useful for soft-
ware developers seeking to gather information from
the vast amount of code of Stack Overflow.

5 RELATED WORK

Traceability in software engineering research typi-
cally refers to the discovery of traceability links from
requirements or related natural text documentation to-
wards the source code (Antoniol et al., 2002) (Mar-
cus et al., 2005). Even as test-to-code traceability is
not the most fashionable topic among link recovery
tasks, there are several well-known methods that aim
to cope with this problem (Rompaey and Demeyer,
2009). Test related traceability examples also can be
found (Kaushik et al., 2011) (Rompaey and Demeyer,
2009) (Kicsi et al., 2018) (Qusef et al., 2011) (Csuvik
et al., 2019), however no known perfect solution ex-
ists to the problem. In the research community serious

Exploration and Mining of Source Code Level Traceability Links on Stack Overflow

343

@ T r a n s a c t i o n a l
p u b l i c LoginVO a u t h e n t i c a t e U s e r (LoginVO loginVO) {

PmdUser pmdUser = log inMapper . getpmdUserFromLoginVO (loginVO) ;
LoginVO loginVOFromDB = loginDAO . a u t h e n t i c a t e U s e r (pmdUser) ;
i f (loginVO . getUserName () . e q u a l s I g n o r e C a s e (loginVOFromDB . getUserName ())) {

loginVO . s e t S t a t u s (t r u e) ;
}
r e t u r n loginVO ;

}

Listing 3: An example of the methods returned for the "user login" query by LSI.

attempts have been made at combating the problem
via plugins in the development environment (Philipp
Bouillon, Jens Krinke, Nils Meyer, 2007) or via static
or dynamic analysis (Sneed, 2004) and textual anal-
ysis (Kicsi et al., 2018) (Csuvik et al., 2019). The
current state-of-the-art techniques (Qusef et al., 2014)
rely on a combination of diverse methods. In this
work, we also took advantage of various textual sim-
ilarity techniques, and the combination of these re-
sulted in a promising recovery precision.

Word2Vec (Mikolov et al., 2013) gained a lot of
attention in recent years and became a very popular
approach in natural language processing. With this
method, calculating the similarity between text ele-
ments became a mainstream process (Le and Mikolov,
2014) (Mathieu and Hamou-Lhadj, 2018) (Tufano
et al., 2018) (White et al., 2016) (Ye et al., 2016) (Guo
et al., 2017) (Yang et al., 2016) (Nguyen et al.,
2017). Textual similarity is useful for example in
the problem of clone detection (White et al., 2016).
Doc2Vec is an extension of the Word2Vec method
dealing with whole documents rather than single
words. Although not enjoying the immense popu-
larity of Word2Vec, it is still prominent to the sci-
entific community (Zhu and Hu, 2017) (Dai et al.,
2015) (Wang et al., 2016) (DeFronzo et al., 2015). In
requirement traceability, researchers also made use of
word embeddings to recover appropriate links (Guo
et al., 2017) (Zhao et al., 2018) (Ye et al., 2016).

The valuable data provided by Stack Overflow is
subject to numerous research papers including ones
using textual approaches. For example, the discussed
topics and the developers’ interest is investigated us-
ing Latent Dirichlet Allocation (LDA) (Barua et al.,
2014). Bazeli et al. (Bazelli et al., 2013) have investi-
gated personality traits based on the reputation of the
users. Ginsca et al. (Ginsca and Popescu, 2013) ap-
plied user profiling to determine whether it can be ex-
ploited to spot high-quality contributions. Automated
tagging is one of the most tackled research questions.
This includes classifying the questions into researcher
defined categories (Beyer et al., 2018) or predicting
the existing tags based on the text (Saini and Tripathi,

2018). Stack Overflow data contains a considerable
amount of code snippets as well. Looking for good
code examples, Nasehi et al. (Nasehi et al., 2012)
found that besides the code snippet, the explanation
is also an important factor. Wang et al. (Wang et al.,
2015) address the API usability problem by analyzing
Stack Overflow data with social media analysis and
topic modeling. GitHub is a highly used resource of
the developer community containing a wealth of open
source projects. Since several developers look for ex-
ample code on Stack Overflow, it is natural to investi-
gate whether code snippets from Stack Overflow ap-
pear in GitHub and whether they are adapted (Yang
et al., 2017).

In our paper, we utilize NLP methods to find links
between code snippets targeting test and production
code parts hidden from users who apply usual ways
of information search.

6 CONCLUSIONS

In this paper, we explored the code shared on Stack
Overflow, the most important Q&A site for devel-
opers. Our approach retrieved test-to-code traceabil-
ity links in Stack Overflow data, but not in a usual
way. We applied mining techniques and natural lan-
guage processing methods to obtain links between
code snippets. Contrary to usual link recovery meth-
ods that work within the scope of a development
project, our intention was to reveal links upon com-
mon concepts. We showed that our method can dis-
cover traceability links that seem valid for human ob-
servers and that the approach can be tailored to pro-
duce valid traceability links even on a larger scale.
Our main objective, however, was to show that our
method can be a valid way of mining and exploring
Stack Overflow from a testing point of view.

ICSOFT 2019 - 14th International Conference on Software Technologies

344

ACKNOWLEDGEMENT

This research was supported in part by the Euro-
pean Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002). The Min-
istry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT is acknowledged.

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. (2002). Recovering traceability links be-
tween code and documentation. IEEE Transactions
on Software Engineering, 28(10):970–983.

Baltes, S., Treude, C., and Diehl, S. (2019). SOTorrent:
Studying the Origin, Evolution, and Usage of Stack
Overflow Code Snippets. In MSR ’19 Proceedings of
the 16th International Conference on Mining Software
Repositories.

Barua, A., Thomas, S. W., and Hassan, A. E. (2014). What
are developers talking about? An analysis of topics
and trends in Stack Overflow. Empirical Software En-
gineering.

Bazelli, B., Hindle, A., and Stroulia, E. (2013). On the
Personality Traits of StackOverflow Users. In 2013
IEEE International Conference on Software Mainte-
nance, pages 460–463.

Beyer, S., Macho, C., Pinzger, M., and Di Penta, M. (2018).
Automatically classifying posts into question cate-
gories on stack overflow. In Proc. of the 26th Con-
ference on Program Comprehension, pages 211–221.

Csuvik, V., Kicsi, A., and Vidács, L. (2019). Source code
level word embeddings in aiding semantic test-to-code
traceability. In 10th International Workshop at the
41st International Conference on Software Engineer-
ing (ICSE) – SST 2019. IEEE.

Dai, A. M., Olah, C., and Le, Q. V. (2015). Document Em-
bedding with Paragraph Vectors.

Deerwester, S., Dumais, S., and Landauer, T. (1990). Index-
ing by latent semantic analysis. Journal of the Amer-
ican Society for Information Science and Technology,
41(6):391–407.

DeFronzo, R. A., Lewin, A., Patel, S., Liu, D., Kaste, R.,
Woerle, H. J., and Broedl, U. C. (2015). Combination
of empagliflozin and linagliptin as second-line ther-
apy in subjects with type 2 diabetes inadequately con-
trolled on metformin. Diabetes Care, 38(3):384–393.

Ginsca, A. L. and Popescu, A. (2013). User profiling
for answer quality assessment in Q&A communities.
In Proc. of the 2103 workshop on Data-driven user
behavioral modelling and mining from social media,
pages 25–28.

Guo, J., Cheng, J., and Cleland-Huang, J. (2017). Se-
mantically Enhanced Software Traceability Using
Deep Learning Techniques. In Proceedings - 2017
IEEE/ACM 39th International Conference on Soft-
ware Engineering, ICSE 2017, pages 3–14. IEEE.

Kaushik, N., Tahvildari, L., and Moore, M. (2011). Recon-
structing Traceability between Bugs and Test Cases:
An Experimental Study. In 2011 18th Working
Conference on Reverse Engineering, pages 411–414.
IEEE.

Kicsi, A., Tóth, L., and Vidács, L. (2018). Exploring the
benefits of utilizing conceptual information in test-to-
code traceability. Proceedings of the 6th International
Workshop on Realizing Artificial Intelligence Syner-
gies in Software Engineering, pages 8–14.

Kicsi, A., Vidács, L., Beszédes, A., Kocsis, F., and Kovács,
I. (2017). Information retrieval based feature analysis
for product line adoption in 4gl systems. In Proceed-
ins of the 17th International Conference on Compu-
tational Science and Its Applications – ICCSA 2017,
pages 1–6. IEEE.

Le, Q. V. and Mikolov, T. (2014). Distributed Representa-
tions of Sentences and Documents.

Marcus, A., Maletic, J. I., and Sergeyev, A. (2005). Re-
covery of Traceability Links between Software Doc-
umentation and Source Code. International Journal
of Software Engineering and Knowledge Engineering,
pages 811–836.

Mathieu, N. and Hamou-Lhadj, A. (2018). Word embed-
dings for the software engineering domain. Proceed-
ings of the 15th International Conference on Mining
Software Repositories - MSR ’18, pages 38–41.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013). Distributed Representations of Words and
Phrases and their Compositionality. NIPS’13 Pro-
ceedings of the 26th International Conference on Neu-
ral Information Processing Systems, 2:3111–3119.

Nasehi, S. M., Sillito, J., Maurer, F., and Burns, C. (2012).
What makes a good code example?: A study of pro-
gramming q a in stackoverflow. In 2012 28th IEEE
International Conference on Software Maintenance
(ICSM), pages 25–34.

Nguyen, T. D., Nguyen, A. T., Phan, H. D., and Nguyen,
T. N. (2017). Exploring API embedding for API
usages and applications. In Proceedings - 2017
IEEE/ACM 39th International Conference on Soft-
ware Engineering, ICSE 2017, pages 438–449. IEEE.

Philipp Bouillon, Jens Krinke, Nils Meyer, F. S. (2007).
EzUnit: A Framework for Associating Failed Unit
Tests with Potential Programming Errors. In Agile
Processes in Software Engineering and Extreme Pro-
gramming, volume 4536, pages 101–104. Springer
Berlin Heidelberg.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Bink-
ley, D. (2011). SCOTCH: Test-to-code traceability us-
ing slicing and conceptual coupling. In IEEE Interna-
tional Conference on Software Maintenance, ICSM,
pages 63–72. IEEE.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Bink-
ley, D. (2014). Recovering test-to-code traceability
using slicing and textual analysis. Journal of Systems
and Software, 88:147–168.

Rehurek, R. and Sojka, P. (2010). Software Framework for
Topic Modelling with Large Corpora. Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50.

Exploration and Mining of Source Code Level Traceability Links on Stack Overflow

345

Rompaey, B. V. and Demeyer, S. (2009). Establishing
traceability links between unit test cases and units un-
der test. In European Conference on Software Main-
tenance and Reengineering, CSMR, pages 209–218.
IEEE.

Saini, T. and Tripathi, S. (2018). Predicting tags for stack
overflow questions using different classifiers. In 2018
4th International Conference on Recent Advances in
Information Technology, pages 1–5.

Sneed, H. (2004). Reverse engineering of test cases for
selective regression testing. In European Conference
on Software Maintenance and Reengineering, CSMR
2004, pages 69–74. IEEE.

Tufano, M., Watson, C., Bavota, G., Di Penta, M., White,
M., and Poshyvanyk, D. (2018). Deep learning simi-
larities from different representations of source code.
Proceedings of the 15th International Conference on
Mining Software Repositories - MSR ’18, 18:542–553.

Wang, S., Tang, J., Aggarwal, C., and Liu, H. (2016).
Linked Document Embedding for Classification. In
Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management
- CIKM ’16, pages 115–124, New York, New York,
USA. ACM Press.

Wang, W., Malik, H., and Godfrey, M. W. (2015). Recom-
mending posts concerning api issues in developer q a
sites. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, pages 224–234.

White, M., Tufano, M., Vendome, C., and Poshyvanyk,
D. (2016). Deep learning code fragments for code
clone detection. Proceedings of the 31st IEEE/ACM
International Conference on Automated Software En-
gineering - ASE 2016, pages 87–98.

Yang, D., Martins, P., Saini, V., and Lopes, C. (2017). Stack
overflow in github: Any snippets there? In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 280–290.

Yang, X., Lo, D., Xia, X., Bao, L., and Sun, J. (2016). Com-
bining Word Embedding with Information Retrieval to
Recommend Similar Bug Reports. In Proceedings -
International Symposium on Software Reliability En-
gineering, ISSRE, pages 127–137. IEEE.

Ye, X., Shen, H., Ma, X., Bunescu, R., and Liu, C. (2016).
From word embeddings to document similarities for
improved information retrieval in software engineer-
ing. In Proceedings of the 38th International Confer-
ence on Software Engineering - ICSE ’16, pages 404–
415, New York, New York, USA. ACM Press.

Zhao, T., Cao, Q., and Sun, Q. (2018). An Improved Ap-
proach to Traceability Recovery Based on Word Em-
beddings. In Proceedings - Asia-Pacific Software En-
gineering Conference, APSEC, volume 2017-Decem,
pages 81–89. IEEE.

Zhu, Z. and Hu, J. (2017). Context Aware Document Em-
bedding.

ICSOFT 2019 - 14th International Conference on Software Technologies

346

