Chan, T. F., & Vese, L. A. (2001). Active contours
without edges[J]. IEEE Transactions on Image
Processing, 10(2), 266‐277.
Li, Chunming, Xu, Chenyang, Gui, Changfeng & Fox,
M.D.. (2005). Level set evolution without re-
initialization: A new variational formulation[C].
Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition. 1(1), 430- 436.
Li C L C , Kao C Y , & Gore J C , et al. (2007). Implicit
Active Contours Driven by Local Binary Fitting
Energy[C]. IEEE Conference on Computer Vision &
Pattern Recognition, 1(1), 1-7.
Li C , Kao C Y , & Gore J C , et al. (2008). Minimization
of Region-Scalable Fitting Energy for Image
Segmentation[J]. IEEE Transactions on Image
Processing, 17(10), 1940-1949.
Lankton S, & Tannenbaum A. (2008). Localizing Region-
Based Active Contours[J]. IEEE Transactions on
Image Processing, 17(11), 2029-2039.
Zhang K, Song H, & Zhang L. (2010). Active contours
driven by local image fitting energy[J]. Pattern
Recognition, 43(4), 1199-1206.
Li C , Xu C , & Gui C , et al. (2011). Distance Regularized
Level Set Evolution and Its Application to Image
Segmentation[J]. IEEE Transactions on Image
Processing, 19(12), 3243-3254.
Zhang K , Zhang L , Song H , et al. (2010). Active
contours with selective local or global segmentation:
A new formulation and level set method[J]. Image and
Vision Computing, 28(4), 668-676.
Wang X F, Huang D S, & Xu H. (2010). An efficient local
Chan-Vese model for image segmentation[J]. Pattern
Recognition, 43(3), 603-618.
Dai L , Ding J , & Yang J . (2015). Inhomogeneity-
embedded active contour for natural image
segmentation[J]. Pattern Recognition, 2015, 48(8),
2513-2529.
Abdelsamea, M. M. , & Tsaftaris, S. . (2013). Active
contour model driven by globally signed region
pressure force[C]. International Conference on Digital
Signal Processing. IEEE.
Akram, F., Kim, J. H., & Choi, K. N.. (2013). Active
Contour Method with Locally Computed Signed
Pressure Force Function: An Application to Brain MR
Image Segmentation[C]. Seventh International
Conference on Image & Graphics. IEEE Computer
Society, 1(1), 154-159.
Saini K , Dewal M L , & Rohit M. (2013). Level set based
on new Signed Pressure Force Function for
Echocardiographic image segmentation[J].
International Journal of Innovation & Applied Studies,
3(2), 560-569.
Wu Z, Gurari D, & Wong J Y , et al. (2012). Hierarchical
Partial Matching and Segmentation of Interacting
Cells[C]. International Conference on Medical Image
Computing & Computer-assisted Intervention.
Springer Berlin Heidelberg, 1(1), 389-396.
Park C , Huang J Z , & Ji J X , et al. (2013). Segmentation,
Inference and Classification of Partially Overlapping
Nanoparticles[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(3), 1-1.
Mukherjee S, & Acton S T. (2014). Region Based
Segmentation in Presence of Intensity Inhomogeneity
Using Legendre Polynomials[J]. IEEE Signal
Processing Letters, 22(3), 298-302.
Dai L, Ding J, & Yang J. (2015). Inhomogeneity-
embedded active contour for natural image
segmentation[J]. Pattern Recognition, 48(8), 2513-
2529.
Sarkar R, Mukherjee S, & Acton S T. (2015). Dictionary
Learning Level Set[J]. IEEE Signal Processing Letters,
22(11), 2034-2038.
Xing F, Xie Y, & Yang L. (2016). An Automatic
Learning-Based Framework for Robust Nucleus
Segmentation[J]. IEEE Transactions on Medical
Imaging, 35(2), 550-566.
Zheng, S. , Fang, B. , Wang, P. S. P. , Li, L. , & Gao, M..
(2016). Multi-scale B-spline level set segmenta -tion
based on Gaussian kernel equalization[C]. IEEE
International Conference on Image Processing, 1(1),
4319-4323.
Zheng S , Fang B , & Li L , et al. (2017). Automatic Liver
Lesion Segmentation in CT Combining Fully
Convolutional Networks and Non-negative Matrix
Factorization[J]. Imaging for Patient-Customized
Simulations and Systems for Point-of-Care Ultrasound,
1(1), 44-51.
Zhang, Wei, Fang, Bin, Wu, Xuegang, Qian, Jiye, Yang,
Weibin & Zheng, Shenhai. (2017). An improved
active contour model driven by region-scalable and
local Gaussian-distribution fitting energy[C].
International Conference on Security, Pattern Analysis,
and Cybernetics, 1(1), 417-422.
Zhang, Kaihua, Zhang Lei, Lam Kin-Man, & Zhang David.
(2016). A Level Set Approach to Image Segmentation
With Intensity Inhomogeneity. 1(1), 546-557.
Chen G , Chen M , & Li J , et al. (2017). Retina Image
Vessel Segmentation Using a Hybrid CGLI Level Set
Method[J]. Biomed Research International, 1(1), 1-11.
Lee C H , Soomro S , & Akram F , et al. (2017).
Segmentation of Left and Right Ventricles in Cardiac
MRI Using Active Contours[J]. Computational and
Mathematical Methods in Medicine, 1(1), 1-16.
Min H , Jia W , & Zhao Y , et al. (2018). LATE: A Level-
Set Method Based on Local Approximation of Taylor
Expansion for Segmenting Intensity Inhomogeneous
Images[J]. IEEE Transactions on Image Processing A
Publication of the IEEE Signal Processing Society,
27(10), 5016-5.31.
He, Guanghui, Yang, Guangfang, Fang, Bin & Zhang,
Wei. (2018). An Improved Local or Global Active
Contour Driven by Legendre Polynomials[C].
International Conference on Wavelet Analysis and
Pattern Recognition, 1(1), 23-28.