Discovery and Information Retrieval (KDIR), Rome
Italy, 21-24 October, pages 31–42. SciTePress.
Domeniconi, G., Moro, G., Pasolini, R., and Sartori, C.
(2015b). Iterative Refining of Category Profiles for
Nearest Centroid Cross-Domain Text Classification.
In Knowledge Discovery, Knowledge Engineering and
Knowledge Management - IC3K 2014, Rome, Italy,
2014, Revised Selected Papers, volume 553 of Com-
munications in Computer and Information Science,
pages 50–67. Springer.
Domeniconi, G., Moro, G., Pasolini, R., and Sartori, C.
(2016). A Comparison of Term Weighting Schemes
for Text Classification and Sentiment Analysis with
a Supervised Variant of tf.idf. In Data Management
Technologies and Applications 4th International Con-
ference DATA, Colmar France, 2015, Revised Selected
Papers, volume 584 of Communications in Computer
and Information Science, pages 39–58. Springer.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P.
(1996). From data mining to knowledge discovery in
databases. AI magazine, 17(3):37.
Gezici, S., Kobayashi, H., and Poor, H. V. (2003). Nonpara-
metric nonline-of-sight identification. In Vehicular
Technology Conference, VTC 2003-Fall. IEEE 58th,
volume 4, pages 2544–2548. IEEE.
Guvenc, I., Chong, C.-C., and Watanabe, F. (2007). NLOS
identification and mitigation for UWB localization
systems. In WCNC, pages 1571–1576. IEEE.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA data mining
software: an update. ACM SIGKDD, 11(1):10–18.
Han, J., Kamber, M., and Pei, J. (2006). Data mining: con-
cepts and techniques. Morgan kaufmann.
Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136:
A k-means clustering algorithm. Applied statistics,
pages 100–108.
Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J.
(2005). The elements of statistical learning: data min-
ing, inference and prediction. The Mathematical In-
telligencer, 27(2):83–85.
Kuang, Y.,
˚
Astr
¨
om, K., and Tufvesson, F. (2013). Single
antenna anchor-free UWB positioning based on mul-
tipath propagation. In ICC, pages 5814–5818. IEEE.
Lagunas, E., Taponecco, L., N
´
ajar, M., and D’Amico, A.
(2010). TOA estimation in UWB: Comparison be-
tween time and frequency domain processing. Mobile
Lightweight Wireless Systems, page 506.
Lewis, D. D. (1998). Naive (Bayes) at forty: The inde-
pendence assumption in information retrieval. In In
ECML, pages 4–15. Springer.
Li, X. and Pahlavan, K. (2004). Super-resolution TOA esti-
mation with diversity for indoor geolocation. Wireless
Communications, IEEE Transactions, 3(1):224–234.
Marano, S., Gifford, W. M., Wymeersch, H., and Win, M. Z.
(2010). NLOS identification and mitigation for local-
ization based on UWB experimental data. IEEE Se-
lected Areas in Communications, 28(7):1026–1035.
Molisch, A. F., Cassioli, D., Chong, C.-C., Emami, S., Fort,
A., Kannan, B., Karedal, J., Kunisch, J., Schantz,
H. G., Siwiak, K., et al. (2006). A comprehen-
sive standardized model for ultrawideband propaga-
tion channels. Antennas and Propagation, IEEE
Transactions, 54(11):3151–3166.
Moro, G. and Monti, G. (2012). W-grid: A scalable
and efficient self-organizing infrastructure for multi-
dimensional data management, querying and routing
in wireless data-centric sensor networks. J. Network
and Computer Applications, 35(4):1218–1234.
M
¨
uller, P., Wymeersch, H., and Pich
´
e, R. (2014). UWB
positioning with generalized gaussian mixture fil-
ters. IEEE Transactions on Mobile Computing,
13(10):2406–2414.
Nguyen, T. V., Jeong, Y., Shin, H., and Win, M. Z.
(2015). Machine learning for wideband localization.
IEEE Journal on Selected Areas in Communications,
33(7):1357–1380.
Pearl, J. (2014). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann.
Quinlan, J. R. (1993). C4. 5: programs for machine learn-
ing, volume 1. Morgan kaufmann.
Sahinoglu, Z., Gezici, S., and Gvenc, I. (2011). Ultra-
wideband Positioning Systems: Theoretical Limits,
Ranging Algorithms, and Protocols. Cambridge Uni-
versity Press, New York, NY, USA.
Suykens, J. A., Van Gestel, T., De Brabanter, J., De Moor,
B., Vandewalle, J., Suykens, J., and Van Gestel, T.
(2002). Least squares support vector machines, vol-
ume 4. World Scientific.
Tseng, Y.-C., Wu, S.-L., Liao, W.-H., and Chao, C.-M.
(2001). Location awareness in ad hoc wireless mo-
bile networks. Computer, 34(6):46–52.
Witten, I. H. and Frank, E. (2005). Data Mining: Practi-
cal machine learning tools and techniques. Morgan
Kaufmann.
Wylie, M. P. and Holtzman, J. (1996). The non-line of sight
problem in mobile location estimation. In Universal
Personal Communications, IEEE International Con-
ference, volume 2, pages 827–831. IEEE.
Zhu, M., Vieira, J., Kuang, Y.,
˚
Astr
¨
om, K., Molisch, A. F.,
and Tufvesson, F. (2015). Tracking and positioning
using phase information from estimated multi-path
components. In IEEE ICCW, pages 712–717. IEEE.
LOS/NLOS Wireless Channel Identification based on Data Mining of UWB Signals
425