A22 =2* w* E 12 + (4*k- p *s ˆ2+2* s ˆ2) ...
*( E44 - E55 ) -2* w * E2 3 ;
A23 =6* w*( E44 - E55 )+(3 * k-p *s ˆ2+ s ˆ 2) ...
* E23 -2 * w* E33 ;
A33=w * E23 +(2* k - p* s ˆ2 + s ˆ2 )* E33 ;
B1 = E6 6 ; B2 = E67 ;B3 = E 77 ;
B4 = E1 3 +2*( E55 - E44 );
B5 = E2 2 +E55 - E44 ;
B6 = -E11 -2*( E44 - E5 5 )-E33 + E88 ;
C=- e ps *( E66 +E77 + E88 );
% 2* P3 + P4 = V
xm in = -2; xmax =5; st ep s = 10 00 ;
x= ze ros ( step s ,1);
me = z eros ( steps ,1);
for i = 1: steps
x(i )= xmin + i/steps *( xmax - xmin );
q4 = x( i )* V /2 ; q5 =V -2* q4 ;
M=q1 ˆ2 * A1 1 +q1 *q2 * A12 + q1*q3*A13 . ..
+ q2 ˆ 2* A 22 + q2 * q3 * A2 3 + q3 ˆ2* A33 .. .
+ q1 * B1 + q2 * B2 + q3 * B3 + q4 * B4 ...
+ q5 * B5 + q6 * B6 + C;
me ( i )= mi n ( eig (M ( 1: 3 ,1:3))) ;
end
fp ri nt f (' max - min ei g = %d\ n' , max(me ))
ho ld on
pl ot ( x,me )
pl ot ( x, zeros ( le ng th ( x ) ,1) ,' r' )
6 CONCLUSIONS
We presented a bilinear matrix inequality (BMI) ap-
proach for the computation of Lyapunov functions for
autonomous, linear stochastic differential equations
(SDE). For a concrete example we showed how to
derive the BMI problem and we verified the results
of our approach by comparing with previous findings.
Future work will be aimed at writing software to gen-
erate the BMI problem automatically for a general au-
tonomous, linear SDE and solving the BMI problem
numerically.
ACKNOWLEDGEMENT
The research done for this paper was supported by the
Icelandic Research Fund (Rann
´
ıs) in the project ‘Lya-
punov Methods and Stochastic Stability’ (152429-
051), which is gratefully acknowledged.
REFERENCES
Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions.
Springer.
Bartels, R. and Stewart, G. (1972). Solution of the matrix
equation AX+XB=C. Communications of the ACM,
15(9):820–826.
Bjornsson, H., Giesl, P., Gudmundsson, S., and Hafstein,
S. (2018). Local Lyapunov functions for nonlinear
stochastic differential equations by linearization. In
In Proceedings of the 15th International Conference
on Informatics in Control, Automation and Robotics
(ICINCO), pages 579–586.
Bjornsson, H. and Hafstein, S. (2018). Dynamical Systems
in Theoretical Perspective, volume 248 of Springer
Proceedings in Mathematics and Statistics, chapter
Lyapunov functions for almost sure exponential sta-
bility, pages 51–61. Springer.
Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan,
V. (1994). Linear matrix inequalities in system and
control theory, volume 15 of SIAM Studies in Ap-
plied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.
Filippov, A. (1988). Differential Equations with Discon-
tinuous Right-hand Side. Kluwer. Translated from
Russian, original book from 1985.
Gudmundsson, S. and Hafstein, S. (2018). Probabilistic
basin of attraction and its estimation using two Lya-
punov functions. Complexity, Article ID:2895658.
Hafstein, S., Gudmundsson, S., Giesl, P., and Scalas,
E. (2018). Lyapunov function computation for au-
tonomous linear stochastic differential equations us-
ing sum-of-squares programming. Discrete Contin.
Dyn. Syst Ser. B, 23(2):939–956.
Khasminskii, R. (2012). Stochastic stability of differential
equations. Springer, 2nd edition.
Kheirandishfard, M., Zohrizadeh, F., Adil, M., and Madani,
R. (2018a). Convex relaxation of bilinear matrix in-
equalities part II: Applications to optimal control syn-
thesis. In Proceedings of 57rd IEEE Conference on
Decision and Control (CDC), pages 75–82.
Kheirandishfard, M., Zohrizadeh, F., and Madani, R.
(2018b). Convex relaxation of bilinear matrix inequal-
ities part I: Theoretical results. In Proceedings of 57rd
IEEE Conference on Decision and Control (CDC),
pages 67–74.
Liberzon, D. (2003). Switching in systems and control.
Systems & Control: Foundations & Applications.
Birkh
¨
auser.
Mao, X. (2008). Stochastic Differential Equations and Ap-
plications. Woodhead Publishing, 2nd edition.
Mikkelsen, C. (2009). Numerical Methods For Large Lya-
punov Equations. PhD thesis: Purdue University,
West Lafayette (IN), USA.
Sun, Z. and Ge, S. (2011). Stability Theory of Switched Dy-
namical Systems. Communications and Control Engi-
neering. Springer.
Sylvester, J. (1884). Sur l’equation en matrices px=xq. C.
R. Acad. Sci. Paris., 99(2):67–71, 115–116.
VanAntwerp, J. and Braatz (2000). A tutorial on linear and
bilinear matrix inequalities. Journal of Process Con-
trol, 10:363–385.
Lyapunov Functions for Linear Stochastic Differential Equations: BMI Formulation of the Conditions
155