ACKNOWLEDGMENTS
This research was in part funded by World Class
Research from Directorate for Research and
Community Service, Ministry of Research,
Technology and Higher Education, the Republic of
Indonesia.
REFERENCES
Augustin, J.M., Kuzina, V., Andersen, S.B., Bak, S., 2011
Molecular activities, biosynthesis and evolution of
triterpenoid saponins. Phytochemistry 72, 435-457.
Basyuni, M., Oku, H., Inafuku, M., Baba, S., Iwasaki, H.,
Oshiro, K., Okabe, T., Shibuya, M. and Ebizuka, Y.,
2006. Molecular cloning and functional expression of
a multifunctional triterpene synthase cDNA from a
mangrove species Kandelia candel (L.) Druce.
Phytochemistry, 67(23), 2517-2524.
Basyuni, M., Oku, H., Tsujimoto, E., Kinjo, K., Baba, S.
and Takara, K., 2007a. Triterpene synthases from the
Okinawan mangrove tribe, Rhizophoraceae. The FEBS
Journal, 274(19), 5028-5042.
Basyuni, M., Oku, H., Tsujimoto, E., and Baba, S. 2007b.
Cloning and functional expression of cycloartenol
synthases from mangrove species Rhizophora stylosa
Griff. and Kandelia candel (L.) Druce. Bioscience,
Biotechnology, and Biochemistry, 71(7), 1788-1792.
Basyuni, M., Baba, S., Inafuku, M., Iwasaki, H., Kinjo, K.
and Oku, H., 2009. Expression of terpenoid synthase
mRNA and terpenoid content in salt stressed
mangrove. Journal of Plant Physiology, 166(16),
1786-1800.
Basyuni, M., Baba, S., Kinjo, Y., Putri, L.A., Hakim, L.
and Oku, H., 2012a. Salt-dependent increase in
triterpenoids is reversible upon transfer to fresh water
in mangrove plants Kandelia candel and Bruguiera
gymnorrhiza. Journal of Plant Physiology, 169(18),
1903-1908.
Basyuni, M., Baba, S., Kinjo, Y., and Oku, H. 2012b.
Salinity increases the triterpenoid content of a salt
secretor and a non-salt secretor mangrove. Aquatic
Botany, 97(1), 17-23.
Basyuni, M., Wati, R., Sulistiyono, N., Hayati, R., Oku, H.,
Baba, S., & Sagami, H. 2018. Protein modelling of
triterpene synthase genes from mangrove plants using
Phyre2 and Swiss-model. Journal of Physics:
Conference Series, 978 (1), 012095. IOP Publishing.
Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J.,
Clark, R. M., et al. 2011. The Arabidopsis lyrata
genome sequence and the basis of rapid genome size
change. Nature Genetics, 43(5), 476.
Husselstein–Muller, T., Schaller, H., and Benveniste, P.
(2001). Molecular cloning and expression in yeast of 2,
3–oxidosqualene–triterpenoid cyclases from
Arabidopsis thaliana. Plant molecular biology, 45(1),
75-92.
Isah, M.B., Ibrahim, M.A., Mohammed, A., Aliyu, A.B.,
Masola, B. and Coetzer, T.H., 2016. A systematic
review of pentacyclic triterpenes and their derivatives
as chemotherapeutic agents against tropical parasitic
diseases. Parasitology, 143(10), 1219-1231.
Kawano, N., Ichinose, K., and Ebizuka, Y. (2002).
Molecular cloning and functional expression of
cDNAs encoding oxidosqualene cyclases from Costus
speciosus. Biological and Pharmaceutical Bulletin,
25(4), 477-482.
Leushkin, E. V., Sutormin, R. A., Nabieva, E. R., Penin, A.
A., Kondrashov, A. S., & Logacheva, M. D. (2013).
The miniature genome of a carnivorous plant Genlisea
aurea contains a low number of genes and short non-
coding sequences. BMC Genomics, 14(1), 476.
Mayer, K., Schüller, C., Wambutt, R., et al., 1999.
Sequence and analysis of chromosome 4 of the plant
Arabidopsis thaliana. Nature, 402(6763), 769.
Moses, T., Papadopoulou, K.K. and Osbourn, A., 2014.
Metabolic and functional diversity of saponins,
biosynthetic intermediates and semi-synthetic
derivatives. Critical Reviews in Biochemistry and
Molecular Biology, 49(6), 439-462.
Salanoubat, M., Lemcke, K., Rieger, M., et al., 2000.
Sequence and analysis of chromosome 3 of the plant
Arabidopsis thaliana. Nature, 408(6814), 820
Sawai, S. and Saito, K., 2011. Triterpenoid biosynthesis
and engineering in plants. Frontiers in Plant Science,
2, 25.
Sheng, H. and Sun, H., 2011. Synthesis, biology and
clinical significance of pentacyclic triterpenes: a
multi-target approach to prevention and treatment of
metabolic and vascular diseases. Natural Product
Reports, 28(3),543-593.
Shibuya, M., Xiang, T., Katsube, Y., Otsuka, M., Zhang,
H. and Ebizuka, Y., 2007. Origin of structural
diversity in natural triterpenes: direct synthesis of
seco-triterpene skeletons by oxidosqualene cyclase.
Journal of the American Chemical Society, 129(5),
1450-1455.
Suzuki, M., Xiang, T., Ohyama, K., et al., 2006.
Lanosterol synthase in dicotyledonous plants. Plant
and Cell Physiology, 47(5), 565-571.
Tabata, S., Kaneko, T., Nakamura, Y., et al., 2000.
Sequence and analysis of chromosome 5 of the plant
Arabidopsis thaliana. Nature, 408(6814), 823.
Tansakul, P., Shibuya, M., Kushiro, T., & Ebizuka, Y.
2006. Dammarenediol‐II synthase, the first dedicated
enzyme for ginsenoside biosynthesis, in Panax ginseng.
FEBS Letters, 580(22), 5143-5149.
Thimmappa, R., Geisler, K., Louveau, T., O'Maille, P. and
Osbourn, A., 2014. Triterpene biosynthesis in plants.
Annual Review of Plant Biology, 65, 225-257.
Yu, B. and Sun, J., 2009. Current synthesis of triterpene
saponins. Chemistry–An Asian Journal, 4(5), 642-654.
Search for Triterpene Synthase in the NCBI Database
11