Okinawan mangrove tribe, Rhizophoraceae. The
FEBS Journal, 274(19), 5028-5042.
Basyuni, M., Oku, H., Tsujimoto, E., and Baba, S. 2007b.
Cloning and functional expression of cycloartenol
synthases from mangrove species Rhizophora
stylosa Griff. and Kandelia candel (L.) Druce.
Bioscience, Biotechnology, and Biochemistry, 71(7),
1788-1792.
Basyuni, M., Baba, S., Inafuku, M., Iwasaki, H., Kinjo,
K. and Oku, H., 2009. Expression of terpenoid
synthase mRNA and terpenoid content in salt
stressed mangrove. Journal of Plant Physiology,
166(16), 1786-1800.
Basyuni, M., Baba, S., Kinjo, Y., Putri, L.A., Hakim, L.
and Oku, H., 2012a. Salt-dependent increase in
triterpenoids is reversible upon transfer to fresh
water in mangrove plants Kandelia candel and
Bruguiera gymnorrhiza. Journal of Plant
Physiology, 169(18), 1903-1908.
Basyuni, M., Baba, S., Kinjo, Y., and Oku, H. 2012b.
Salinity increases the triterpenoid content of a salt
secretor and a non-salt secretor mangrove. Aquatic
Botany, 97(1), 17-23.
Basyuni, M., Sulistiyono, N., Wati, R., Oku, H., Baba, S.,
and Sagami, H. 2018. Predicted cycloartenol
synthase protein from Kandelia obovata and
Rhizophora stylosa using online software of Phyre2
and Swiss-model. Journal of Physics : Conference
Series, 978 (1), 012077.
Bloch, K. E. 1983. Sterol, structure and membrane
function. Critical Reviews in Biochemistry, 14(1),
47-92.
Corey, E. J., Matsuda, S. P., and Bartel, B. 1993.
Isolation of an Arabidopsis thaliana gene encoding
cycloartenol synthase by functional expression in a
yeast mutant lacking lanosterol synthase by the use
of a chromatographic screen. In Proceedings of the
National Academy of Sciences, 90(24), 11628-11632.
Gas-Pascual, E., Berna, A., Bach, T. J., and Schaller, H.
2014. Plant oxidosqualene metabolism: cycloartenol
synthase–dependent sterol biosynthesis in Nicotiana
benthamiana. PLoS One, 9(10), e109156.
Inafuku, M., Basyuni, M., and Oku, H. 2018.
Triterpenoid modulates the salt tolerance of
lanosterol synthase deficient Saccharomyces
cerevisiae, GIL77. Saudi Journal of Biological
Sciences, 25(1), 1-9.
International Rice Genome Sequencing Project 2005.
The map-based sequence of the rice genome. Nature,
436(7052), 793.
Koch, B. P., Souza Filho, P. W., Behling, H., et al., 2011.
Triterpenols in mangrove sediments as a proxy for
organic matter derived from the red mangrove
(Rhizophora mangle). Organic Geochemistry, 42(1),
62-73.
Marchler-Bauer, A., Bo, Y., Han, L., et al., 2016.
CDD/SPARCLE: functional classification of
proteins via subfamily domain architectures. Nucleic
acids research, 45(D1), D200-D203.
Moses, T., Papadopoulou, K.K. and Osbourn, A., 2014.
Metabolic and functional diversity of saponins,
biosynthetic intermediates and semi-synthetic
derivatives. Critical reviews in biochemistry and
molecular biology, 49(6), pp.439-462.
Roach, M. J., Johnson, D. L., Bohlmann, J., et al., 2018.
Population sequencing reveals clonal diversity and
ancestral inbreeding in the grapevine cultivar
Chardonnay. PLoS Genetics, 14(11), e1007807.
Soderlund, C., Descour, A., Kudrna, D., et al., 2009.
Sequencing, mapping, and analysis of 27,455 maize
full-length cDNAs. PLoS Genetics, 5(11), e1000740.
Thimmappa, R., Geisler, K., Louveau, T., O'Maille, P.
and Osbourn, A., 2014. Triterpene biosynthesis in
plants. Annual Review of Plant Biology, 65, pp.225-
257.
Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J.
H., Easmin, M. S., Bt Shamsudin, S. H., & Yunus, K.
B. (2015). Phytosterols and their extraction from
various plant matrices using supercritical carbon
dioxide: a review. Journal of the Science of Food
and Agriculture, 95(7), 1385-1394.
Xue, Z., Duan, L., Liu, D., et al., 2012. Divergent
evolution of oxidosqualene cyclases in plants. New
Phytologist, 193(4), 1022-1038.
Young, N. D., Debellé, F., Oldroyd, G. E., et al., 2011.
The Medicago genome provides insight into the
evolution of rhizobial symbioses. Nature, 480(7378),
520.
NCBI Database on Cycloartenol Synthase
19