Basyuni, M., Wati, R., Sagami, H., Oku, H., and Baba, S.
2018. Bioinformatics approach of three partial
polyprenol reductase genes in Kandelia obovata.
Journal of Physics: Conference Series 978, 012044.
Basyuni, M., Baba, S., Wati, R., Sumardi, Sulistiyono, N.,
Oku, H., and Sagami, H. 2018. Isolation and
phylogenetic analysis of new predicted polyprenol
reductase from mangrove plant (Kandelia obovata
Sheue, HY Liu & J. Yong). AIP Conference
Proceedings 2002, 020041.
Basyuni, M., and Wati, R. 2018. Bioinformatics analysis
of the predicted polyprenol reductase genes in higher
plants. Journal of Physics: Conference Series 978,
012050.
Buczkowska, A., Swiezewska, E., Lefeber, D. J. 2015.
Genetic defects in dolichol metabolism. Journal of
inherited metabolic disease, 38(1), 157-169.
Cantagrel, V., Lefeber, D. J., Ng, B. G., et al., 2010.
SRD5A3 is required for converting polyprenol to
dolichol and is mutated in a congenital glycosylation
disorder. Cell, 142(2), 203-217.
Chávez, B., Ramos, L., García-Becerra, R., and Vilchis, F.
2015. Hamster SRD5A3 lacks steroid 5α-reductase
activity in vitro. Steroids, 94, 41-50.
Dsouzaschorey, C., McLachlan, K. R., Krag, S. S., and
Elbein, A. D. 1994. Mammalian glycosyltransferases
prefer glycosyl phosphoryl dolichols rather than
glycosyl phosphoryl polyprenols as substrates for
oligosaccharyl synthesis. Archives of Biochemistry
and Biophysics, 308(2), 497-503.
Gründahl, J. E. H., Guan, Z., Rust, S., et al., 2012. Life
with too much polyprenol: polyprenol reductase
deficiency. Molecular Genetics and Metabolism,
105(4), 642-651.
Jozwiak, A., Gutkowska, M., Gawarecka, K., et al., 2015.
POLYPRENOL REDUCTASE2 deficiency is lethal in
Arabidopsis due to male sterility. The Plant Cell,
27(12), 3336-3353.
Naparstek, S., Guan, Z., and Eichler, J. 2012. A predicted
geranylgeranyl reductase reduces the ω-position
isoprene of dolichol phosphate in the halophilic
archaeon, Haloferax volcanii. Biochimica et
Biophysica Acta (BBA)-Molecular and Cell Biology of
Lipids, 1821(6), 923-933.
Nacusi, L. P., and Tindall, D. J. 2011. Targeting 5α-
reductase for prostate cancer prevention and treatment.
Nature Reviews Urology, 8(7), 378.
Quellhorst Jr, G. J., Hall, C. W., Robbins, A. R., and Krag,
S. S. 1997. Synthesis of dolichol in a polyprenol
reductase mutant is restored by elevation of cis-
prenyltransferase activity. Archives of Biochemistry
and Biophysics, 343(1), 19-26.
Rosenwald, A. G., Stanley, P., McLachlan, K. R., & Krag,
S. S. 1993. Mutants in dolichol synthesis: conversion
of polyprenol to dolichol appears to be a rate-limiting
step in dolichol synthesis. Glycobiology, 3(5), 481-
488.
Sagami, H., Swiezewska, E., & Shidoji, Y. 2018. The
history and recent advances in research of polyprenol
and its derivatives. Bioscience, Biotechnology, And
Biochemistry, 82(6), 947-955.
Sakaihara, T., Honda, A., Tateyama, S., and Sagami, H.
2000. Subcellular fractionation of polyprenyl
diphosphate synthase activities responsible for the
syntheses of polyprenols and dolichols in spinach
leaves. The Journal of Biochemistry, 128(6), 1073-
1078.
Schmidt, L. J., and Tindall, D. J. 2011. Steroid 5 α-
reductase inhibitors targeting BPH and prostate
cancer. The Journal of Steroid Biochemistry and
Molecular Biology, 125(1-2), 32-38.
Stiles, A. R., and Russell, D. W. 2010. SRD5A3: a
surprising role in glycosylation. Cell, 142(2), 196-198.
Szkopinska, A., Swiezewska, E., and Rytka, J. 2006.
Interplay between the cis-prenyltransferases and
polyprenol reductase in the yeast Saccharomyces
cerevisiae. Biochimie, 88(3-4), 271-276.
Tateyama, S., and Sagami, H. 2001. Study on the
biosynthesis of dolichol in yeast: Recognition of the
prenyl chain length in polyprenol reduction. The
Journal of Biochemistry, 129(2), 297-302.
Tao, R., Wang, C., Ye, J., Zhou, H., and Chen, H. 2016.
Polyprenols of Ginkgo biloba enhance antibacterial
activity of five classes of antibiotics. BioMed
Research International, 2016.
Information on Polyprenol Reductase Enzyme in the NCBI Online
107