Huang, T.-J. (2017). Imitating the Brain with
Neurocomputer: A “New” Way Towards Artificial
General Intelligence. International Journal of
Automation and Computing, 14(5), 520–531.
http://doi.org/10.1007/s11633-017-1082-y.
Jiang, J., Zhang, J., Yang, G. H., Zhang, D., and Zhang, L.
(2010). Application of back propagation neural network
in the classification of high resolution remote sensing
image: Take remote sensing image of beijing for
instance. In 2010 18th International Conference on
Geoinformatics (pp. 1–6). Beijing, China: IEEE.
Kusumadewi, S. (2006). Jaringan Syaraf Tiruan.
Yogyakarta: Graha Ilmu.
Laudon, K. C., and Laudon, J. P. (2007). Management
Information Systems: Managing the Digital Firm (10th
ed.). Lebanon, IN: Prentice.
Liang, P., Zhaoyang, X., and Jiguang, D. (2010).
Application of BP neural network in remote sensing
image classification. In 2010 International Conference
on Computer Application and System Modeling
(ICCASM 2010) (pp. 212–215). IEEE.
Lisboa, P. J. G. (2002). A review of evidence of health
benefit from artificial neural networks in medical
intervention. Neural Networks: The Official Journal of
the International Neural Network Society, 15(1), 11–
39. http://doi.org/10.1016/s0893-6080(01)00111-3.
Lisboa, P. J. G., and Taktak, A. F. G. (2006). The use of
artificial neural networks in decision support in cancer:
A systematic review. Neural Networks: The Official
Journal of the International Neural Network Society,
19(4), 408–415. http://doi.org/10.1016/j.neunet.2005.
10.007.
Mantzaris, D. H., Anastassopoulos, G. C., and
Lymberopoulos, D. K. (2008). Medical disease
prediction using Artificial Neural Networks. In 2008
8th IEEE International Conference on BioInformatics
and BioEngineering. Athens, Greece: IEEE.
Meengoen, N., Wongkittisuksa, B., and Tanthanuch, S.
(2017). Measurement study of human blood pH based
on optical technique by back propagation artificial
neural network. In 2017 International Electrical
Engineering Congress (iEECON) (pp. 8–10). IEEE.
Nayak, R., Jain, L. C., and Ting, B. K. H. (2001). Artificial
Neural Networks in Biomedical Engineering: A
Review. In S. Valliappan and N. Khalili (Eds.),
Computational Mechanics–New Frontiers for the New
Millennium: Proceedings of the First Asian-Pacific
Congress on Computational Mechanics, Sydney,
N.S.W., Australia, 20-23 November 2001 (Vol. 1, pp.
887–892). Amsterdam: Elsevier.
Nicoletti, G. M. (2000). An Analysis of Neural Networks
as Simulators and Emulators. Cybernetics and Systems,
31(3), 253–282. http://doi.org/10.1080/01969720012
4810.
Ottenbacher, K. J., Linn, R. T., Smith, P. M., Illig, S. B.,
Mancuso, M., and Granger, C. V. (2004). Comparison
of logistic regression and neural network analysis
applied to predicting living setting after hip fracture.
Annals of Epidemiology, 14(8), 551–559.
http://doi.org/10.1016/j.annepidem.2003.10.005.
Paliwal, M., and Kumar, U. A. (2009). Neural networks and
statistical techniques: A review of applications. Expert
Systems with Applications, 36(1), 2–17. http://doi.org/
10.1016/j.eswa.2007.10.005
Panchal, F. S., and Panchal, M. (2014). Review on Methods
of Selecting Number of Hidden Nodes in Artificial
Neural Network. International Journal of Computer
Science and Mobile Computing, 3(11), 455–464.
http://doi.org/10.1155/2013/425740.
Park, S. H., and Han, K. (2018). Methodologic Guide for
Evaluating Clinical Performance and Effect of
Artificial Intelligence Technology for Medical
Diagnosis and Prediction. Radiology, 286(3), 800–809.
http://doi.org/10.1148/radiol.2017171920.
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F.,
Ortega, J., and Rojas, I. (2016). Neural networks: An
overview of early research, current frameworks and
new challenges. Neurocomputing, 214, 242–268.
http://doi.org/10.1016/j.neucom.2016.06.014.
Ramesh, A. N., Kambhampati, C., Monson, J. R. T., and
Drew, P. J. (2004). Artificial intelligence in medicine.
Annals of the Royal College of Surgeons of England,
86(5), 334–338. http://doi.org/10.1308/147870804290.
Remzi, M., Anagnostou, T., Ravery, V., Zlotta, A.,
Stephan, C., and Marberger, M. (2003). An artificial
neural network to predict the outcome of repeat prostate
biopsies. Urology, 62(3), 456–460. http://doi.org/
10.1016/s0090-4295(03)00409-6.
Richards, J. A. (2006). Remote Sensing Digital Image
Analysis: An Introduction. Berlin: Springer-Verlag.
Sargent, D. J. (2001). Comparison of artificial neural
networks with other statistical approaches. Cancer,
91(S8), 1636–1642. http://doi.org/10.1002/1097-0142
(20010415)91:8 <1636::AID-CNCR1176>3.0.CO;2-D
Sazli, M. H. (2006). A brief review of feed-forward neural
networks. Communications Faculty of Sciences
University of Ankara, 50(1), 11–17. http://doi.org/
10.1501/0003168.
Siang, J. J. (2009). Jaringan Syaraf Tiruan and
Pemrogramannya Menggunakan Matlab. Yogyakarta:
ANDI.
Song, J. H., Venkatesh, S. S., Conant, E. A., Arger, P. H.,
and Sehgal, C. M. (2005). Comparative analysis of
logistic regression and artificial neural network for
computer-aided diagnosis of breast masses. Academic
Radiology, 12(4), 487–495. http://doi.org/10.1016/
j.acra.2004.12.016.
Suliman, A., and Zhang, Y. (2015). A Review on Back-
Propagation Neural Networks in the Application of
Remote Sensing Image Classification. Journal of Earth
Science and Engineering, 5
, 52–65. http://doi.org/
10.17265/2159-581X/2015.01.004.
Sun, Y., Peng, Y., Chen, Y., and Shukla, A. J. (2003).
Application of artificial neural networks in the design
of controlled release drug delivery systems. Advanced
Drug Delivery Reviews, 55(9), 1201–1215.
http://doi.org/10.1016/S0169-409X(03)00119-4.
Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R. B.,
and Selker, H. P. (2003). External validity of predictive
models: A comparison of logistic regression,
The 4th ICE on IMERI 2019 - The annual International Conference and Exhibition on Indonesian Medical Education and Research Institute