REFERENCES
A. Armoto, L. Fanucci, E.P. Scilingo and D.De Rossi.
(2011). Low-error digital hardware
implementation of artificial neuron activation
functions and their derivative. Microprocessors
and Microsystems, 557-567.
Adi, S. (2013). Characterization of flashflood disaster
in Indonesia. Jurnal Sains dan Teknologi
Indonesia , Vol.15 no 1.
Ali, A and Hidayati,S. (2016). Whirl Wind Detection
and Identification in Indonesia Utilizing Single
Polarization Doppler Weather Radar Volumetric
Data. The International Archives of the
Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume XLI-B8, 2016
XXIII ISPRS Congress.
Bock, S., & Weis, M. (2019). A Proof of Local
Convergence for the Adam Optimizer.
Proceedings of the International Joint Conference
on Neural Networks, 2019-July(July), 1ā8.
https://doi.org/10.1109/IJCNN.2019.8852239
Bringi, V. N. and Chandrasekar, V. (2001). The
polarimetric basis for characterizing precipitation.
In: Polarimetric Doppler Weather Radar.
Cambridge University Press, Cambridge, pp.
378ā533.
Chai, T., & Draxler, R. R. (2014). Root mean square
error (RMSE) or mean absolute error (MAE)? -
Arguments against avoiding RMSE in the
literature. Geoscientific Model Development,
7(3), 1247ā1250. https://doi.org/10.5194/gmd-7-
1247-2014
Chandrasekar, V., Tan, H., and Chen, H. (2017). A
machine learning system for rainfall estimation
from spaceborne and ground radars. URSI GASS,
mONTREAL.
Codo, M., and Rico-Ramirez, M.A. (2018). Ensemble
Radar-Based Rainfall Forecasts for Urban
Hydrological Applications. Geosciences, Basel
Vol. 8, Iss. 8.
Germann, U., Galli, G. Boscacci, M., and Bolliger,
M. (2006). Radar precipitation measurement in a
mountainous region. Q. J. R. Meteorol. Soc, 132,
1669ā1692.
Harrison,D.L., Driscoll,S.J., and Kitchen,M . (2000).
Improving precipitation estimates from weather
radar using quality control and correction
techniques. Meteorol. Appl., 2000, 7, 135ā14.
Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359ā
366. https://doi.org/10.1016/0893-
6080(89)90020-8
Kingma, D. P., & Ba, J. L. (2015). Adam: A method
for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, 1ā15.
M. Marzuki, H. Hashiguchi, M. K. Yamamoto2, S.
Mori and M. D. Yamanaka. (2013). Regional
variability of raindrop size distribution over
Indonesia. Annales Geophysicae, 31, 1941ā1948.
Minervino, A.C and Duarte, E.C. (2015). Loss and
damage affecting the public health sector and
society resulting from flooding and flash floods in
Brazil between 2010 and 2014 - based on data
from national and global information systems.
CiĆŖncia & SaĆŗde Coletiva, 685-693.
Paul, S.H., Sharif, H.O., and Crawford, A.M.G.
(2018). Fatalities Caused by Hydrometeorological
Disasters in Texas. MDPI Basel , Vol. 8, Iss. 5.
Raghavan, s. (2003). Radar Meteorology.
Netherlands: Kluwer Academic Publishers.
Rauber, R.M and Nesbitt, S.W. (2014). Radar
Meteorology. LCCN 2017061104 (ebook) .
Rico-Ramirez, M.A., and Cluckie, I.D. (2007).
Bright-band detection from radar vertical
reļ¬ectivity proļ¬les. Int. J. Remote Sens, 28, 4013ā
4025.
Tan, H., Chandrasekar, V., & Chen, H. (2017). A
machine learning model for radar rainfall
estimation based on gauge observations. 2017
United States National Committee of URSI
National Radio Science Meeting, USNC-URSI
NRSM 2017, 1ā2.
https://doi.org/10.1109/USNC-URSI-
NRSM.2017.7878317
Theodoridis, S., Koutroumbas, K., Koutroumbas, K.,
& Koutroumbas, K. . (2008). Pattern recognition.
Retrieved from http://ebookcentral.proquest.com
Created from indonesiau-ebooks on 2019-03-10
14:16:34.
Tjasyono, B.H.K., and Harijono, S.W.B. (2007).
Meteorologi Indonesia 2. . Jakarta: Badan
Meteorologi dan Geofisika.
Tsun-Hua, Y., Lei, F., and Lung-Yao, C., . (2016).
Improving radar estimates of rainfall using an
input subset of artificial neural networks. J. Appl.
Remote Sens, 10(2), 026013 doi: 10.1117/1.
JRS.10.026013.
Zhang, Z. (2019). Improved Adam Optimizer for
Deep Neural Networks. 2018 IEEE/ACM 26th
International Symposium on Quality of Service,
IWQoS 2018, 1ā2.
https://doi.org/10.1109/IWQoS.2018.8624183