4 CONCLUSIONS
Adsorption of acid violet 17 to activated carbon takes
place on a homogeneous solid surface form a single
layer at the surface. The maximum dyes removal
capacity is 185.19 mg/g. From the kinetic study, it
was known that the mechanism of acid violet 17
adsorptions on activated carbon is determined by the
diffusion stage in the particle. The percent dyes
removal was 58% achieved when 0.0015 g adsorbent
was used per ml solution.
ACKNOWLEDGMENTS
A deep gratitude is given to Stephanus Wibowo and
Andrew Riyadi S. for their full support during the
completion of this research works.
REFERENCES
Abd-Elhamid, A.I., Kamoun, E.A., El-Shanshory, A.A.,
Soliman, H.M.A. & Aly, H.F., 2019. Evaluation of
graphene oxide-activated carbon as effective composite
adsorbent toward the removal of cationic dyes:
Composite preparation, characterization and adsorption
parameters. Journal of Molecular Liquids 279, 530-539.
Belbel, B., Kharroubia, M., Janot, J., Abdessamad, M.,
Haouzi, A., Lefkaier, I.K. & Balme, S., 2018.
Preparation and characterization of homoionic
montmorillonite modified with ionic liquid:
Application in dye adsorption. Colloids and Surfaces A:
Physicochem. Eng. Aspects 558, 219-227.
Benabi, S., Streit, A.F.M., Benguerb, Y., Dotto, G.L., Erto,
A. & Ernst, B., 2019. Molecular modeling of anionic
and cationic dyes adsorption on sludge derived
activated carbon. Journal of Molecular Liquids 289, 1-
8.
Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari,
M. & Sadaoui, Z., 2019. Comparative study on removal
of two basic dyes in aqueous medium by adsorption
using activated carbon from Ziziphus lotus stones.
Microchemical Journal 146, 1010-1018.
Daoud, M., Benturki, O., Girods, P., Donnot, A. & Fontana,
S., 2019. Adsorption ability of activated carbons from
Phoenix dactylifera rachis and Ziziphus jujube stones
for the removal of commercial dye and the treatment of
dyestuff wastewater. Microchemical Journal 148, 493-
502.
Dotto, G.L., Buriol, C. & Pinto, L.A.A. (2014) Diffusional
mass transfer model for the adsorption of food dyes on
chitosan films. Chemical Engineering Research and
Design 92, 2324-2332.
Ferreira, Guilherme M.D., Ferreira, Gabriel M.D.,
Hespanhol, M.C., Rezende, J., Pires, A.C. , Gurgel,
L.V.A & Mendes da Silva, L.H., 2017. Adsorption of
red azo dyes on multi-walled carbon nanotubes and
activated carbon: A thermodynamic study. Colloids
and Surfaces A: Physicochem. Eng. Aspects 529, 531-
540.
Gamoudi, S. & Srasra, E., 2019. Adsorption of organic
dyes by HDPyþ-modified clay: Effect of molecular
structure on the adsorption. Journal of Molecular
Structure 1193, 522-531.
Gao, Y., Deng, S., Jin, X., Cai, S., Zheng, S. & Zhang, W.,
2019. The construction of amorphous metal-organic
cage-based solid for rapid dye adsorption and time-
dependent dye separation from water. Chemical
Engineering Journal 357, 129-139.
Goswami, M. & Phukan, P., 2017. Enhanced adsorption of
cationic dyes using sulfonic acid modified activated
carbon. Journal of Environmental Chemical
Engineering 5 (4), 3508-3517.
Herrera-González, A.M., Caldera-Villalobos, M. & Peláez-
Cid, A., 2019. Adsorption of textile dyes using an
activated carbon and crosslinked polyvinyl phosphonic
acid composite. Journal of Environmental Management
234, 237-244.
Jain, S.N. & Gogate, P.R., 2017. Adsorptive removal of
acid violet 17 dye from wastewater using biosorbent
obtained from NaOH and H2SO4 activation of fallen
leaves of Ficus racemosa. Journal of Molecular Liquids
243, 132–143.
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z., Bhatti,
H.N. & Nouren, S. (2018) Dyes adsorption using clay
and modified clay: A review. Journal of Molecular
Liquids 256, 395-407.
Khorasani, A.C. & Shojaosadati, S.A., 2019. Magnetic
pectin-Chlorella vulgaris biosorbent for the adsorption
of dyes. Journal of Environmental Chemical
Engineering 7 (3), 1-8.
Liu, K., Deng, L., Li, H., Bao, Y., Xiao, Z., Li, B., Zhou,
Q., Geng, Y. & Wang, L., 2019. Two isostructural
Co/Ni fluorine-containing metal-organic frameworks
for dye adsorption and supercapacitor. Journal of Solid
State Chemistry 275, 1-7.
Li, W., Mu, B. & Yang, Y. (2019) Feasibility of industrial-
scale treatment of dye wastewater via bioadsorption
technology. Bioresource Technology 277, 157-170.
Magdy, Y.H. & Altaher, H., 2018. Kinetic analysis of the
adsorption of dyes from high strength wastewater on
cement kiln dust. Journal of Environmental Chemical
Engineering 6 (1), 834-841.
Ocampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P.,
Rivera-Utrilla, J. & Sanchez-Polo, M., 2010. Modeling
adsorption rate of pyridine onto granular activated
carbon. Chemical Engineering Journal 165, 133-141.
Ocampo-Perez, R., Leyva-Ramos, R., Mendoza-Barron, J.
& Guerrero-Coronado, R.M., 2011. Adsorption rate of
phenol from aqueous solution onto organobentonite:
Surface diffusion and kinetic models. Journal of
Colloid and Interface Science 364, 195-204.
Ocampo-Pérez, R., Rivera-Utrilla, J., Gómez-Pacheco, C.,
Sánchez-Polo, M. & López-Peñalver, J.J., 2012.
Kinetic study of tetracycline adsorption on sludge-