Graphs with Partition Dimension 3 and Locating-chromatic
Number 4
Debi Oktia Haryeni
1
and Edy Tri Baskoro
2
1
Department of Mathematics, Faculty of Military Mathematics and Natural Science, The Republic of Indonesia Defense
University, IPSC Area, Sentul, Bogor 16810, Indonesia
2
Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10 Bandung 40132 Indonesia
Keywords: Graph, Tree, Partition Dimension, Locating-Chromatic Number, Cycle, Path.
Abstract
:
The characterization study of all graphs with partition dimension either 2,๐‘› โˆ’ 2,๐‘›โˆ’ 1 or ๐‘› has been
completely done. In the case of locating-chromatic numbers, the efforts in characterizing all graphs with
locating-chromatic number either 2,3, ๐‘› โˆ’ 1 or ๐‘› have reached to complete results. In this paper we present
methods to obtain a family of graphs having partition dimension 3 or locating-chromatic number 4 by using
the previous known results.
1 INTRODUCTION
The concepts of partition dimension and locating-
chromatic number of connected graphs were
introduced by Chartrand et al. in (Chartrand et al.,
1998) and in (Chartrand et al., 2002), respectively.
The locating-chromatic number for graphs is a special
case of the partition dimension notion. In order to
generalize these two concepts, Haryeni et al. in
(Haryeni et al., 2017) enlarged the notion of the par-
tition dimension so that it can be applied also to dis-
connected graphs, and Welyyanti et al. in (Welyyanti
et al., 2014) enlarged the notion of locating-chromatic
number for disconnected graphs.
Let ๐น=(๐‘‰,๐ธ) be a (not necessarily connected)
graph and ฮ ={๐‘†
๎ฌต
,๐‘†
๎ฌถ
,โ€ฆ,๐‘†
๎ฏž
} be a partition of ๐‘‰(๐น),
where ๐‘†
๎ฏœ
is a partition class of ฮ  for each 1โ‰ค ๐‘–โ‰ค
๐‘˜. If the distance ๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฏœ
)<โˆž for all ๐‘ฃโˆˆ๐‘‰(๐น)
and ๐‘†
๎ฏœ
โˆˆฮ , then the representation ๐‘Ÿ(๐‘ฃ|ฮ ) of ๐‘ฃ with
respect to ฮ  is (๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฌต
),๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฌถ
),โ€ฆ,๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฏž
)).
The partition ฮ  is a resolving partition of F if every
two distinct vertices ๐‘ข,๐‘ฃโˆˆ ๐‘‰(๐น) have distinct
representations with respect to ฮ , namely ๐‘Ÿ
(
๐‘ข
|
ฮ 
)
โ‰ 
๐‘Ÿ(๐‘ฃ|ฮ ). The partition dimension of ๐น, denoted by
๐‘๐‘‘(๐น) for a connected ๐น or by ๐‘๐‘‘๐‘‘(๐น) for a
disconnected ๐น, is the cardinality of a smallest
resolving partition of ๐น. For a disconnected graph ๐น,
if there is no a resolving partition of ๐น, then
๐‘๐‘‘๐‘‘(๐น)=โˆž. In addition, if the partition ฮ  is
induced by a proper ๐‘˜โˆ’coloring ๐‘, then we define the
color code ๐‘
๎ฎˆ
(๐‘ฃ) of a vertex ๐‘ฃโˆˆ๐‘‰(๐น) with
(๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฌต
),๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฌถ
),โ€ฆ,๐‘‘
๎ฎฟ
(๐‘ฃ,๐‘†
๎ฏž
)). If all vertices of
๐น have different color codes, then ๐‘ is a locating
coloring of ๐น.
The locating-chromatic number of ๐น, denoted by
๐œ’
๎ฏ…
(๐น) for a connected ๐น or by ๐œ’
๎ฏ…
โ€ฒ(๐น) for a
disconnected graph ๐น, is the least integer ๐‘˜ such that
๐น admits a locating ๐‘˜โˆ’coloring. Otherwise, we say
that ๐œ’
๎ฏ…
๏‡ฑ
(
๐น
)
=โˆž.
Chartrand et al. in (Chartrand et al., 2000)
characterized all connected graphs on ๐‘›(โ‰ฅ3)
vertices having the partition dimension 2,๐‘›, or ๐‘›โˆ’1.
Tomescu in (Tomescu, 2008) showed that there are
only 23 connected graphs on ๐‘›(โ‰ฅ9) vertices with the
partition dimension ๐‘›โˆ’2. Further results of the
partition dimension of graphs for some graph
operations, namely corona product, Cartesian product
and strong product, can be observed in (Rodrยดฤฑguez-
Velazquez et al., 2016; Yero et al., 2014; Yero et al.,
2010).
On the other hand, all connected graphs on ๐‘›
vertices with locating-chromatic number ๐‘› or ๐‘›โˆ’1
was characterized in (Chartrand et al., 2003). In the
same paper, they also gave conditions for graph ๐น on
๐‘›(โ‰ฅ 5) vertices with ๐œ’
๎ฏ…
(
๐น
)
โ‰ค๐‘›โˆ’2. The
characterization of all graphs with locating-chromatic
number 3 can be seen in (Baskoro and Asmiati, 2013)
and (Asmiati and Baskoro, 2012).
14
Haryeni, D. and Baskoro, E.
Graphs with Partition Dimension 3 and Locating-chromatic Number 4.
DOI: 10.5220/0009876400002775
In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019), pages 14-19
ISBN: 978-989-758-556-2
Copyright
c
๎€ 2022 by SCITEPRESS โ€“ Science and Technology Publications, Lda. All rights reserved
In this paper, motivated by the results of the
characterization of all graphs with locating-chromatic
number 3, we present some method to extend those
graphs so that their partition dimension is equal to 3.
Furthermore, we show that these new graphs have
locating-chromatic number 4. We also construct some
classes of graphs by connecting some vertices in a
disjoint union of paths, so that the partition dimension
of these graphs remains equal to 3.
In order to present the results, we need additional
notions and some known results as follows. Let ฮ =
{๐‘†
๎ฌต
,๐‘†
๎ฌถ
,โ€ฆ,๐‘†
๎ฏž
} be a resolving partition of ๐‘‰(๐น). For
an integer ๐‘˜โ‰ฅ1, a vertex ๐‘ขโˆˆ๐‘‰(๐น) is defined as
๐‘˜โˆ’distance vertex with respect to ฮ  if ๐‘‘
๎ฎฟ
(
๐‘ฃ,๐‘†
๎ฏœ
)
=0
or ๐‘˜ for any ๐‘†
๎ฏœ
โˆˆฮ  . Note that in the locating-
chromatic number of ๐น, the only possible value of ๐‘˜
is 1 and the vertex ๐‘ข satisfies this condition is called
a dominant vertex.
Definition 1.1. (Haryeni et al., 2019) Let F be a
graph and ๐›ฑ={๐‘†
๎ฌต
,๐‘†
๎ฌถ
,โ€ฆ,๐‘†
๎ฏž
} be a minimum
resolving partition of ๐น. Two distinct vertices ๐‘,๐‘žโˆˆ
๐‘‰(๐น) in ๐‘†
๎ฏœ
for some ๐‘–โˆˆ[1,๐‘˜] are called
independent vertices with respect to ๐›ฑ if there exist
two distinct integers, namely ๐‘— and ๐‘™ which different
from ๐‘– , such that ๐‘‘
๎ฎฟ
๎ตซ๐‘,๐‘†
๎ฏ
๎ตฏโˆ’๐‘‘
๎ฎฟ
๎ตซ๐‘ž,๐‘†
๎ฏ
๎ตฏโ‰ 
๐‘‘
๎ฎฟ
(
๐‘,๐‘†
๎ฏŸ
)
โˆ’๐‘‘
๎ฎฟ
(
๐‘ž,๐‘†
๎ฏŸ
)
. Furthermore, if there exists a
minimum resolving partition of ๐น such that any two
vertices in the same class partition are independent,
then ๐น is called an independent graph. Otherwise, ๐น
is a dependent graph.
Definition 1.2. (Haryeni et al., 2019) Let F be a
graph and ๐ตโŠ†๐‘‰(๐น) where ๐ต=(๐‘
๎ฌต
,๐‘
๎ฌถ
,โ€ฆ,๐‘
๎ฏž
). We
denote F [
(
๐‘
๎ฌต
,๐‘
๎ฌถ
,โ€ฆ,๐‘
๎ฏž
)
;
(
๐‘›
๎ฌต
,๐‘›
๎ฌถ
,โ€ฆ,๐‘›
๎ฏž
)
] as a hair
graph of ๐น with respect to ๐ต which is obtained from
๐น by attaching a path ๐‘ƒ
๎ฏก
๎ณ”
with ๐‘›
๎ฏœ
(โ‰ฅ 2) vertices to a
root vertex ๐‘
๎ฏœ
, for all ๐‘–โˆˆ[1,๐‘˜]. Furthermore, the set
of all hair graphs obtained from the graph ๐น is
denoted by ๐ป๐‘Ž๐‘–๐‘Ÿ(๐น).
Theorem 1.3. (Haryeni et al., 2019) Let ๐น be a graph
with a finite partition dimension. For any ๐ปโˆˆ
๐ป๐‘Ž๐‘–๐‘Ÿ(๐น), then
๐‘๐‘‘๐‘‘
(
๐ป
)
โ‰ค๎ตœ
๐‘๐‘‘๐‘‘
(
๐น
)
, ๐‘–๐‘“ ๐น ๐‘–๐‘  ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก,
๐‘๐‘‘๐‘‘
(
๐น
)
+1, ๐‘–๐‘“ ๐น ๐‘–๐‘  ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก.
Proposition 1.4. (Haryeni et al., 2019) For any ๐‘›โ‰ฅ
3, a path ๐‘ƒ
๎ฏก
is a dependent graph with any resolving
2-partition.
Theorem 1.5. (Haryeni et al., 2017) Let ๐น be a
disjoint union of ๐‘š paths with different lengths. If
๐‘š=1, then ๐‘๐‘‘(๐น)=2. Otherwise, ๐‘๐‘‘๐‘‘(๐น)=3.
Corrollary 1.6. (Haryeni et al., 2017) If ๐ปโˆˆ
๐ป๐‘Ž๐‘–๐‘Ÿ
(
๐‘ƒ
๎ฏ 
)
and ๐ปโ‰‡๐‘ƒ
๎ฏก
for any ๐‘›โ‰ฅ๐‘š, then
๐‘๐‘‘
(
๐ป
)
=3.
2 TREES WITH PARTITION
DIMENSION 3 AND
LOCATING-CHROMATIC
NUMBER 4
Let ๐‘‡ be a tree with 3 dominant vertices ๐‘ฅ,๐‘ฆ and
๐‘ง, and ๐‘Ž๐‘ƒ
๎ฏ•
= (๐‘Ž,๐‘ฅ,๐‘ข
๎ฌต
,๐‘ข
๎ฌถ
,๐‘ข
๎ฏฅ๎ฌฟ๎ฌต
,๐‘ข
๎ฏฅ
= ๐‘ฆ,๐‘ฃ
๎ฌต
,๐‘ฃ
๎ฌถ
,
โ€ฆ,๐‘ฃ
๎ฏฆ๎ฌฟ๎ฌต
,๐‘ฃ
๎ฏฆ
=๐‘ง,๐‘) be a path with ๐‘Ÿ,๐‘  odd. If ๐‘Ÿ,๐‘ >
1, then define ๐‘ข
โˆ—
=๐‘ข
๏‰”
๎ณ
๎ฐฎ
๏‰•
, ๐‘ข
โˆ—โˆ—
=๐‘ข
๏‰”
๎ณ๎ฐถ๎ฐญ
๎ฐฎ
๏‰•
, ๐‘ฃ
โˆ—
=๐‘ฃ
๏‰”
๎ณž
๎ฐฎ
๏‰•
, and
๐‘ฃ
โˆ—โˆ—
=๐‘ฃ
๏‰”
๎ณž๎ฐถ๎ฐญ
๎ฐฎ
๏‰•
. Note that all internal vertices ๐‘ข
๎ฏœ
and ๐‘ฃ
๎ฏ
of ๐‘‡ excluding ๐‘ข
โˆ—
,๐‘ข
โˆ—โˆ—
,๐‘ฃ
โˆ—
and ๐‘ฃ
โˆ—โˆ—
have degree 2. In
The following result, Baskoro and Asmiati (Baskoro
and Asmiati, 2013) characterized all trees with
locating-chromatic number 3.
Lemma 2.1. (Baskoro and Asmiati, 2013) In any tree
๐‘‡ with ๐œ’
๎ฏ…
(
๐‘‡
)
=3, the color code of any vertex is
(๐‘Ž
๎ฌต
,๐‘Ž
๎ฌถ
,๐‘Ž
๎ฌท
) where {๐‘Ž
๎ฌต
,๐‘Ž
๎ฌถ
,๐‘Ž
๎ฌท
}={0,1,๐‘˜} for some
๐‘˜โ‰ฅ1.
Theorem 2.2. (Baskoro and Asmiati, 2013) Let ๐‘‡ be
a tree on ๐‘›(โ‰ฅ 3) vertices. The value ๐œ’
๎ฏ…
(
๐‘‡
)
=3 iff ๐‘‡
is isomorphic to either ๐‘ƒ
๎ฌท
,๐‘ƒ
๎ฌธ
,๐‘†
๎ฌต,๎ฌถ
,๐‘†
๎ฌถ,๎ฌถ
, or any subtree
in Figure 1 containing a path ๐‘Ž๐‘ƒ
๎ฏ•
.
Theorem 2.3. Let ๐น be a graph other than a path
with ๐œ’
๎ฏ…
โ€ฒ
(
๐‘‡
)
=3. Then, ๐น is always independent.
Proof. Let ๐‘: ๐‘‰
(
๐น
)
โ†’{1,2,3} be any 3-coloring on
graph ๐น. Let ฮ ={๐‘†
๎ฌต
,๐‘†
๎ฌถ
,๐‘†
๎ฌท
} be the partition of ๐น
induced by ๐‘. We will show that any two vertices
๐‘,๐‘žโˆˆ๐‘†
๎ฏ”
for some ๐‘Žโˆˆ[1,3] are independent vertices
with respect to ฮ . If ๐‘ and ๐‘ž are in different partition
classes, then certainly ๐‘ and ๐‘ž are independent. Now
assume that ๐‘ and ๐‘ž are in the same class, say ๐‘,๐‘žโˆˆ
๐‘†
๎ฌต
. This implies that ๐‘
๎ฎˆ
(
๐‘ฅ
)
=(0,๐‘
๎ฌถ
,๐‘
๎ฌท
) and ๐‘
๎ฎˆ
(
๐‘ฆ
)
=
(
0,๐‘‘
๎ฌถ
,๐‘‘
๎ฌท
)
. By Lemma 2.1, then we have ๐‘
๎ฎˆ
(
๐‘ฅ
)
=
(0,๐‘
๎ฌถ
,1) and ๐‘
๎ฎˆ
(
๐‘ฆ
)
=
(
0,๐‘‘
๎ฌถ
,1
)
, or ๐‘
๎ฎˆ
(
๐‘ฅ
)
=
(0,1,๐‘
๎ฌท
) and ๐‘
๎ฎˆ
(
๐‘ฆ
)
=
(
0,1,๐‘‘
๎ฌท
)
, or ๐‘
๎ฎˆ
(
๐‘ฅ
)
=(0,1,๐‘
๎ฌท
)
and
๐‘
๎ฎˆ
(
๐‘ฆ
)
=
(
0,๐‘‘
๎ฌถ
,1
)
, or ๐‘
๎ฎˆ
(
๐‘ฅ
)
= (0,๐‘
๎ฌถ
,1) and
Graphs with Partition Dimension 3 and Locating-chromatic Number 4
15
Figure 1: Any subtree ๐‘‡ containing a path ๐‘Ž๐‘ƒ
๎ฏ•
with
๐œ’
๎ฏ…
(
๐‘‡
)
=3 Now, we present the following results.
๐‘
๎ฎˆ
(
๐‘ฆ
)
=
(
0,1,๐‘‘
๎ฌท
)
. Note that ๐‘ is a locating coloring
of ๐น so that ๐‘
๎ฎˆ
(
๐‘ฅ
)
โ‰ ๐‘
๎ฎˆ
(
๐‘ฆ
)
. Therefore, for the
previous four cases we can conclude that ๐‘
๎ฌถ
โˆ’๐‘‘
๎ฌถ
โ‰ 
๐‘
๎ฌท
โˆ’๐‘‘
๎ฌท
. This implies that any two vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘†
๎ฏ”
of ๐น are indepedent vertices so that ๐น is an
independent graph with respect to the partition ฮ .
By Theorems 2.2 and 2.3, we show that any hair
graph of tree ๐‘‡ in Theorem 2.2 has partition
dimension 3 and locating-chromatic number 4.
Corollary 2.4. Let ๐‘‡ be either a path ๐‘ƒ
๎ฌท
or ๐‘ƒ
๎ฌธ
, a
double star ๐‘†
๎ฌต,๎ฌถ
or ๐‘†
๎ฌถ,๎ฌถ
, or a subtree in Figure 1
containing a path ๐‘Ž๐‘ƒ
๎ฏ•
. For all ๐ปโˆˆ๐ป๐‘Ž๐‘–๐‘Ÿ(๐‘‡) where
๐ปโ‰‡๐‘ƒ
๎ฏ 
, then ๐‘๐‘‘(๐ป)=3 and with ๐œ’
๎ฏ…
(๐ป)=4.
Proof. If ๐‘‡ is isomorphic to a path, then ๐‘๐‘‘
(
๐ป
)
=3
for any ๐ปโˆˆ๐ป๐‘Ž๐‘–๐‘Ÿ(๐‘‡) with ๐ปโ‰‡๐‘ƒ
๎ฏ 
, by Corollary 1.5.
Now we suppose that ๐‘‡ is not isomorphic to a path.
Since ๐ปโ‰‡๐‘ƒ
๎ฏ 
, ๐‘๐‘‘(๐ป)โ‰ฅ3. By Theorems 2.2 and
2.3, then ๐‘‡ is an independent graph with locating 3-
coloring. By Theorem 1.3, then ๐‘๐‘‘(๐ป)โ‰ค๐‘๐‘‘(๐‘‡) โ‰ค
๐œ’
๎ฏ…
(๐‘‡)=3. Further-more, since all trees ๐‘‡ with
๐œ’
๎ฏ…
(๐‘‡)=3 are only a path ๐‘ƒ
๎ฌท
or ๐‘ƒ
๎ฌธ
, a double star
๐‘†
๎ฌต,๎ฌถ
or ๐‘†
๎ฌถ,๎ฌถ
, or a subtree in Figure 1 containing a path
๐‘Ž๐‘ƒ
๎ฏ•
, ๐œ’
๎ฏ…
(
๐ป
)
โ‰ฅ4. The coloring of ๐ป with 4 colors is
given in Figure 2. The color of the new vertices of ๐ป
are 4 and ๐‘– alternately, where ๐‘– is the color of the root
vertex.
3 GRAPHS CONTAINING CYCLE
WITH PARTITION
DIMENSION 3 AND
LOCATING-CHROMATIC
NUMBER 4
In the following theorem, all graphs containing cycle
with locating-chromating number 3 have been
characterized, see (Asmiati and Baskoro, 2012).
Figure 2: The locating 4-coloring of graph ๐ปโˆˆ๐ป๐‘Ž๐‘–๐‘Ÿ(๐‘‡)
where ๐‘‡ depicted in Figure 1
Theorem 3.1. (Asmiati and Baskoro, 2012) Let ๐น be
any graph having a smallest odd cycle ๐ถ. Then
๐œ’
๎ฏ…
(๐น)=3 iff ๐น is a subgraph of one of the graphs in
Figure 3 which every vertex ๐‘Žโˆ‰๐ถ of degree 3 must
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
16
be lie in a path connecting two different vertices in ๐ถ.
By a similar reason to Corollary 2.4, we show that for
every ๐ปโˆˆ๐ป๐‘Ž๐‘–๐‘Ÿ(๐น), where ๐น is a graph in Theorem
3.1, then ๐‘๐‘‘(๐ป)=3 and ๐œ’
๎ฏ…
(๐ป)=4.
Corollary 3.2. Let ๐น be any graph having a smallest
odd cycle ๐ถ, where ๐น is a subgraph of one of the
graphs in Figure 3 which every vertex a ๐‘Žโˆ‰๐ถ of
degree 3 must be lie in a path connecting two different
vertices in ๐ถ. For all ๐ปโˆˆ๐ป๐‘Ž๐‘–๐‘Ÿ(๐น), then ๐‘๐‘‘(๐ป)=3
and ๐œ’
๎ฏ…
(๐ป)=4.
Figure 3: The four types of maximal graphs containing an
odd cycle with chromatic location number 3.
For now on, for any integer ๐‘šโ‰ฅ2, define the graph
๐บ=
โ‹ƒ
๐‘ƒ
๎ฏก
๎ณ”
๎ฏ 
๎ฏœ๎ญ€๎ฌต
where ๐‘›
๎ฌต
โ‰ฅ3 and ๐‘›
๎ฏœ๎ฌพ๎ฌต
= ๐‘›
๎ฏœ
+1 for
all ๐‘–โˆˆ[1,๐‘šโˆ’1]. Note that ๐‘๐‘‘๐‘‘(๐บ)=3 by Lemma
1.5. In the next result, we construct some graphs
obtaining from disjoint union of paths ๐บ=
โ‹ƒ
๐‘ƒ
๎ฏก
๎ณ”
๎ฏ 
๎ฏœ๎ญ€๎ฌต
so that their partition dimensions remains equal to 3.
Let the set of vertices and edges of ๐บ by
๐‘‰
(
๐บ
)
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,1โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
๎ตŸ and
๐ธ
(
๐บ
)
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
๐‘ฃ
๎ฏœ,๎ฏ๎ฌพ๎ฌต
:1โ‰ค๐‘–โ‰ค๐‘š,1โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
โˆ’1๎ตŸ,
respectively. Let ๐‘†
๎ฌต
,๐‘†
๎ฌถ
and ๐‘†
๎ฌท
be three subsets of
๐‘‰(๐บ) where
๐‘†
๎ฌต
=๎ต›๐‘ฃ
๎ฏœ,๎ฌต
:1โ‰ค๐‘–โ‰ค๐‘š๎ตŸ, (1)
๐‘†
๎ฌถ
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,2โ‰ค๐‘—โ‰ค๐‘–+1๎ตŸ, (2)
๐‘†
๎ฌท
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,๐‘–+ 2โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
๎ตŸ. (3)
By the above definitions, for three distinct vertices
๐‘ฅ,๐‘ฆ,๐‘งโˆˆ ๐‘‰(๐น) where ๐‘ฅ=๐‘ฃ
๎ฏœ,๎ฌต
โˆˆ๐‘†
๎ฌต
, ๐‘ฆ= ๐‘ฃ
๎ฏœ,๎ฏ
โˆˆ ๐‘†
๎ฌถ
and ๐‘ง=๐‘ฃ
๎ฏœ,๎ฏž
โˆˆ๐‘†
๎ฌท
for some ๐‘–โˆˆ
[
1,๐‘š
]
,๐‘—โˆˆ[2,๐‘–+ 1]
and ๐‘˜โˆˆ[๐‘– + 2,๐‘›
๎ฏœ
], we have
๐‘‘
๎ฏ€
(
๐‘ฅ,๐‘†
๎ฏง
)
=๎ต
0, if ๐‘ก=1,
1, if ๐‘ก=2,
๐‘–+ 1, if ๐‘ก=3,
๐‘‘
๎ฏ€
(
๐‘ฆ,๐‘†
๎ฏง
)
=๎ต
๐‘— โˆ’ 1, if ๐‘ก=1,
0, if ๐‘ก=2,
๐‘–+2โˆ’๐‘—, if ๐‘ก=3,
๐‘‘
๎ฏ€
(
๐‘ง,๐‘†
๎ฏง
)
=๎ต
๐‘˜โˆ’ 1, if ๐‘ก=1,
๐‘˜โˆ’๐‘–โˆ’1, if ๐‘ก=2,
0, if ๐‘ก=3.
Now, define new graphs ๐บ
๏‡ฑ
=๐บโˆช๐ธ
๎ฌต
โˆช๐ธ
๎ฌถ
and ๐บโŠ†
๐บ
๏‡ฑ๏‡ฑ
โŠ†๐บโ€ฒ, where ๐ธ
๎ฌต
and ๐ธ
๎ฌถ
are two sets of additional
edges connecting some vertices of ๐น as follows.
๐ธ
๎ฌต
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘šโˆ’1,1โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
๎ตŸ
๐ธ
๎ฌถ
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
๐‘ฃ
๎ฏœ๎ฌพ๎ฌต,๎ฏ๎ฌพ๎ฌต
:1โ‰ค๐‘–โ‰ค๐‘šโˆ’1,1โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
โˆ’1๎ตŸ
By the above definitions, then ๐‘‰
(
๐บ
๏‡ฑ๏‡ฑ
)
=๐‘‰
(
๐บ
๏‡ฑ
)
=
๐‘‰
(
๐บ
)
. Let ๐‘†
๎ฌต
,๐‘†
๎ฌถ
and ๐‘†
๎ฌท
be three subsets of ๐‘‰(๐บโ€™โ€™)
similar to the equations in (1), (2) and (3),
respectively. Therefore, for three distinct vertices
๐‘ฅ,๐‘ฆ,๐‘งโˆˆ ๐‘‰(๐บ
๏‡ฑ๏‡ฑ
) where ๐‘ฅ=๐‘ฃ
๎ฏœ,๎ฌต
โˆˆ๐‘†
๎ฌต
, ๐‘ฆ=๐‘ฃ
๎ฏœ,๎ฏ
โˆˆ๐‘†
๎ฌถ
and ๐‘ง=๐‘ฃ
๎ฏœ,๎ฏž
โˆˆ๐‘†
๎ฌท
where ๐‘–โˆˆ
[
1,๐‘š
]
, ๐‘—โˆˆ[2,๐‘–+ 1]
and ๐‘˜โˆˆ[๐‘–+2,๐‘›
๎ฏœ
], we have
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฅ,๐‘†
๎ฌท
)
=min๎ต›๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌถ
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฏœ,๎ฏœ๎ฌพ๎ฌถ
๎ตฏ
=๐‘–+ 1,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฆ,๐‘†
๎ฌต
)
=min๎ต›๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏŸ,๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏœ,๎ฌต
๎ตฏ
=๐‘—โˆ’ 1,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฆ,๐‘†
๎ฌท
)
=min๎ต›๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌถ
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏœ,๎ฏœ๎ฌพ๎ฌถ
๎ตฏ
=๐‘–+ 2 โˆ’ ๐‘—,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ง,๐‘†
๎ฌต
)
=min๎ต›๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏŸ,๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏœ,๎ฌต
๎ตฏ
=๐‘˜โˆ’ 1,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ง,๐‘†
๎ฌถ
)
=min๎ต›๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏœ,๎ฏœ๎ฌพ๎ฌต
๎ตฏ
=๐‘˜โˆ’ ๐‘–โˆ’ 1.
Therefore, we obtain that
Graphs with Partition Dimension 3 and Locating-chromatic Number 4
17
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฅ,๐‘†
๎ฏง
)
=๎ต
0, if ๐‘ก=1,
1, if ๐‘ก=2,
๐‘–+ 1, if ๐‘ก=3,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฆ,๐‘†
๎ฏง
)
=๎ต
๐‘— โˆ’ 1, if ๐‘ก=1,
0, if ๐‘ก=2,
๐‘–+2โˆ’๐‘—, if ๐‘ก=3,
๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ง,๐‘†
๎ฏง
)
=๎ต
๐‘˜โˆ’1, if ๐‘ก=1,
๐‘˜โˆ’๐‘–โˆ’1, if ๐‘ก=2,
0, if ๐‘ก=3.
By the above notations, we have the following results.
Theorem 3.3. Let ๐บ
๏‡ฑ
=๐บโˆช๐ธ
๎ฌต
โˆช๐ธ
๎ฌถ
and ๐บโŠ†๐บ
๏‡ฑ๏‡ฑ
โŠ†
๐บ
๏‡ฑ
. Then, ๐‘๐‘‘
(
๐บ
๏‡ฑ๏‡ฑ
)
=3.
Proof. Since ๐บโ€™โ€™ is not a path, ๐‘๐‘‘(๐บโ€™โ€™)โ‰ฅ3. To show
the upper bound of partition dimension of ๐บ, define a
partition ฮ =
{
๐‘†
๎ฌต
,๐‘†
๎ฌถ
,๐‘†
๎ฌท
}
of ๐บโ€ฒโ€ฒ where ๐‘†
๎ฌต
=
๎ต›๐‘ฃ
๎ฏœ,๎ฌต
:1โ‰ค๐‘–โ‰ค๐‘š๎ตŸ,๐‘†
๎ฌถ
={๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,2โ‰ค๐‘—โ‰ค
๐‘–+1}, and ๐‘†
๎ฌท
contains the rest vertices of ๐บ. By the
definition of partition ฮ , for a vertex ๐‘ฃ
๎ฏœ,๎ฏ
โˆˆ๐‘‰(๐บ) in
๐‘†
๎ฏ”
where ๐‘–โˆˆ[1,๐‘š], ๐‘—โˆˆ[1,๐‘›
๎ฏœ
] and ๐‘Žโˆˆ[1,3], we
have the representation of ๐‘ฃ
๎ฏœ,๎ฏ
with respect to the
partition ฮ  as follows.
๐‘Ÿ๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
|ฮ ๎ตฏ
=๏‰
(0,1,๐‘–+ 1), if ๐‘—=1,
( ๐‘— โˆ’ 1,0,๐‘– + 2 โˆ’ ๐‘—), if ๐‘—โˆˆ
[
2,๐‘–+ 1
]
,
( ๐‘— โˆ’ 1,๐‘— โˆ’ ๐‘–โˆ’ 1,0), if ๐‘—โˆˆ
[
๐‘–+2,๐‘›
๎ฏœ
]
.
Let us show that ฮ  is a resolving partition of ๐บโ€™โ€™. We
consider any two vertices ๐‘ฅ,๐‘ฆโˆˆ๐‘‰(๐บโ€™โ€™). If ๐‘ฅ and ๐‘ฆare
in the different partition class, then clearly that they
have distinct representation. Now we suppose that
๐‘ฅ,๐‘ฆ โˆˆ ๐‘†
๎ฏ”
for some ๐‘Žโˆˆ[1,3]. If ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฏค
and ๐‘ฆ=
๐‘ฃ
๎ฏฃ,๎ฏฅ
where 1โ‰ค๐‘โ‰ค๐‘š and ๎ตซ2โ‰ค๐‘ž<๐‘Ÿโ‰ค๐‘+
1 or ๐‘+2โ‰ค๐‘ž<๐‘Ÿโ‰ค๐‘›
๎ฏฃ
๎ตฏ, then ๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฅ,๐‘†
๎ฌต
)
=๐‘žโˆ’
1<๐‘Ÿโˆ’1=๐‘‘
๎ฏ€
๏‡ฒ๏‡ฒ
(
๐‘ฆ,๐‘†
๎ฌต
)
. Therefore, ๐‘Ÿ
(
๐‘ฅ
|
ฮ 
)
โ‰ 
๐‘Ÿ
(
๐‘ฆ
|
ฮ 
)
.
Now, assume that ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฏค
and ๐‘ฆ=๐‘ฃ
๎ฏฅ,๎ฏฆ
in ๐‘†
๎ฏ”
for
some ๐‘Žโˆˆ
[
1,3
]
and ๐‘,๐‘Ÿโˆˆ[1,๐‘š] where ๐‘โ‰ ๐‘ž. For
two vertices ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฌต
and ๐‘ฆ=๐‘ฃ
๎ฏฅ,๎ฌต
in ๐‘†
๎ฌต
where 1โ‰ค
๐‘<๐‘Ÿโ‰ค๐‘š, then ๐‘‘
๎ฏ€โ€™โ€™
(๐‘ฅ,๐‘†
๎ฌท
)=๐‘+1<๐‘Ÿ+1=
๐‘‘
๎ฏ€โ€™โ€™
(๐‘ฆ,๐‘†
๎ฌท
). For two vertices ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฏค
and ๐‘ฆ=๐‘ฃ
๎ฏฅ,๎ฏฆ
in
๐‘†
๎ฌถ
where 1โ‰ค๐‘<๐‘Ÿโ‰ค๐‘š,2โ‰ค๐‘žโ‰ค๐‘+1 and 2โ‰ค
๐‘ โ‰ค๐‘Ÿ+1 , if ๐‘‘
๎ฏ€โ€™โ€™
(๐‘ฅ,๐‘†
๎ฌต
)=๐‘žโˆ’1=๐‘ โˆ’1=
๐‘‘
๎ฏ€โ€™โ€™
(๐‘ฆ,๐‘†
๎ฌต
) , then ๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฅ,๐‘†
๎ฌท
)
=๐‘+2โˆ’๐‘ž<๐‘Ÿ+2โˆ’
๐‘ =๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฆ,๐‘†
๎ฌท
)
.Otherwise, ๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฅ,๐‘†
๎ฌต
)
โ‰ ๐‘‘
๎ฏ€โ€™โ€™
(๐‘ฆ,๐‘†
๎ฌต
).
For two vertices ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฏค
and ๐‘ฆ=๐‘ฃ
๎ฏฅ,๎ฏฆ
in ๐‘†
๎ฌท
where
1โ‰ค๐‘<๐‘Ÿโ‰ค๐‘š,
๐‘+2โ‰ค๐‘žโ‰ค๐‘›
๎ฏฃ
and ๐‘Ÿ+2โ‰ค๐‘ โ‰ค๐‘›
๎ฏฅ
, if ๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฅ,๐‘†
๎ฌต
)
=
๐‘žโˆ’1=๐‘ โˆ’1=๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฆ,๐‘†
๎ฌต
)
, then ๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฅ,๐‘†
๎ฌถ
)
=๐‘žโˆ’
๐‘โˆ’1>๐‘Ÿโˆ’๐‘ โˆ’1=๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฆ,๐‘†
๎ฌท
)
. Otherwise,
๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฅ,๐‘†
๎ฌต
)
โ‰ ๐‘‘
๎ฏ€โ€™โ€™
(
๐‘ฆ,๐‘†
๎ฌต
)
. Therefore,
(
๐‘ฅ
|
ฮ 
)
โ‰ ๐‘Ÿ
(
๐‘ฆ
|
ฮ 
)
for any two vertices ๐‘ฅ=๐‘ฃ
๎ฏฃ,๎ฏค
and ๐‘ฆ=๐‘ฃ
๎ฏฅ,๎ฏฆ
of ๐‘‰
(
๐บ
๏‡ฑ๏‡ฑ
)
in ๐‘†
๎ฏ”
for some ๐‘Žโˆˆ[1,3].
The four graphs in Figure 4 give an illustration of
the graphs provided for Theorem 3.3. These graphs
are (a) ๐บ=๐‘ƒ
๎ฌธ
โˆช๐‘ƒ
๎ฌน
โˆช๐‘ƒ
๎ฌบ
โˆช๐‘ƒ
๎ฌป
, (b) ๐บโ€ฒ=๐บโˆช ๐ธ
๎ฌต
โˆช๐ธ
๎ฌถ
,
(c) ๐บ
๎ฌต
๏‡ฑ๏‡ฑ
=๐บโˆช๐ธ
๎ฌต
โ‰…๐บโˆช๐ธ
๎ฌถ
and (d) ๐บ
๎ฌถ
๏‡ฑ๏‡ฑ
โŠ‚๐บโ€ฒ. Note
that from Theorem 3.3, ๐‘๐‘‘(๐บ)=๐‘๐‘‘(๐บโ€ฒ)=
๐‘๐‘‘(๐บ
๎ฌต
๏‡ฑ๏‡ฑ
)=๐‘๐‘‘(๐บ
๎ฌถ
๏‡ฑ๏‡ฑ
)=3.
Figure 4: Graphs (a) ๐บ=๐‘ƒ
๎ฌธ
โˆช๐‘ƒ
๎ฌน
โˆช๐‘ƒ
๎ฌบ
โˆช๐‘ƒ
๎ฌป
, (b) ๐บ
๏‡ฑ
=๐บโˆช
๐ธ
๎ฌต
โˆช๐ธ
๎ฌถ
, (c) ๐บ
๎ฌต
๏‡ฑ๏‡ฑ
=๐บโˆช๐ธ
๎ฌต
, and (d) ๐บ
๎ฌถ
๏‡ฑ๏‡ฑ
โŠ‚๐บ
๏‡ฑ
, where
๐‘๐‘‘(๐บ)=๐‘๐‘‘(๐บโ€ฒ)=๐‘๐‘‘(๐บ
๎ฌต
๏‡ฑ๏‡ฑ
)=๐‘๐‘‘(๐บ
๎ฌถ
๏‡ฑ๏‡ฑ
)=3.
In the next result, we also construct graphs from
disjoint union of paths ๐บ=
โ‹ƒ
๐‘ƒ
๎ฏก
๎ณ”
๎ฏ 
๎ฏœ๎ญ€๎ฌต
, so that their
partition dimensions are equal to 3 as well.
Theorem 3.4. Let ๐บ
๏‡ฑ
=๐บโˆช๐ธ
๎ฌต
โˆช๐ธ
๎ฌถ
,๐นโŠ†๐ธ(๐บ)
where ๐น={๐‘ฃ
๎ฏœ,๎ฏ
๐‘ฃ
๎ฏœ,๎ฏ๎ฌพ๎ฌต
:2โ‰ค๐‘–โ‰ค๐‘šโˆ’1,1โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
โˆ’
1} and ๐น
๏‡ฑ
โŠ†๐น. Then, ๐‘๐‘‘
(
๐บ
๏‡ฑ
โˆ’๐น
๏‡ฑ
)
=3.
Proof. Let ๐ป=๐บ
๏‡ฑ
โˆ’๐นโ€ฒ. This is easy to see that
๐‘๐‘‘(๐ป)โ‰ฅ3 . To show that ๐‘๐‘‘(๐ป)โ‰ค3 , define a
partition ฮ 
๏‡ฑ
={๐‘†
๎ฌต
๏‡ฑ
,๐‘†
๎ฌถ
๏‡ฑ
,๐‘†
๎ฌท
๏‡ฑ
} of ๐ป where ๐‘†
๎ฌต
๏‡ฑ
=๎ต›๐‘ฃ
๎ฏœ,๎ฌต
:1โ‰ค
๐‘–โ‰ค๐‘š๎ตŸ,๐‘†
๎ฌถ
๏‡ฑ
={๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,2โ‰ค๐‘—โ‰ค๐‘–+1} and
๐‘†
๎ฌท
๏‡ฑ
=๎ต›๐‘ฃ
๎ฏœ,๎ฏ
:1โ‰ค๐‘–โ‰ค๐‘š,๐‘–+2โ‰ค๐‘—โ‰ค๐‘›
๎ฏœ
๎ตŸ.
By the definition of a partition ฮ โ€ฒ of ๐‘‰(๐ป), for
three vertices ๐‘ฅ,๐‘ฆ,๐‘ง โˆˆ๐‘‰(๐ป) where ๐‘ฅ=๐‘ฃ
๎ฏœ,๎ฌต
โˆˆ
๐‘†
๎ฌต
๏‡ฑ
,๐‘ฆ=๐‘ฃ
๎ฏœ,๎ฏ
โˆˆ๐‘†
๎ฌถ
๏‡ฑ
and ๐‘ง=๐‘ฃ
๎ฏœ,๎ฏž
โˆˆ๐‘†
๎ฌท
๏‡ฑ
for some ๐‘–โˆˆ
[
2,๐‘š
]
,๐‘—โˆˆ[2, ๐‘– + 1] and ๐‘˜โˆˆ[๐‘– +2,๐‘›
๎ฏœ
], we have
๐‘‘
๎ฏ
(
๐‘ฅ,๐‘†
๎ฌถ
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฏŸ,๎ฌถ
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฏœ๎ฌพ๎ฌต,๎ฌถ
๎ตฏ
=1,
IMC-SciMath 2019 - The International MIPAnet Conference on Science and Mathematics (IMC-SciMath)
18
๐‘‘
๎ฏ
(
๐‘ฅ,๐‘†
๎ฌท
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌถ
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฌต
,๐‘ฃ
๎ฌต,๎ฌท
๎ตฏ
=๐‘–+ 1,
๐‘‘
๎ฏ
(
๐‘ฆ,๐‘†
๎ฌต
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏŸ,๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
= ๏‰Š
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏœ๎ฌฟ๎ฏ๎ฌพ๎ฌต,๎ฌต
๎ตฏ, if ๐‘—โ‰ค๐‘–,
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฌต,๎ฌต
๎ตฏ, if ๐‘—=๐‘–+ 1.
= ๎ตœ
๐‘— โˆ’ 1, if ๐‘—โ‰ค๐‘–,
๐‘–, if ๐‘—=๐‘–+ 1.
=๐‘—โˆ’1
๐‘‘
๎ฏ
(
๐‘ฆ,๐‘†
๎ฌท
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌถ
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
= ๏‰Š
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฌต,๎ฌท
๎ตฏ, if ๐‘—=2,
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏ
,๐‘ฃ
๎ฏ๎ฌฟ๎ฌถ,๎ฏ
๎ตฏ, if ๐‘—โ‰ 2.
= ๎ตœ
๐‘–, if ๐‘—=2,
๐‘–โˆ’๐‘—+2 if ๐‘—โ‰ 2.
=๐‘–+2โˆ’๐‘—
๐‘‘
๎ฏ
(
๐‘ง,๐‘†
๎ฌต
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏŸ,๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
=๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฌต,๎ฌต
๎ตฏ
=๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฌต,๎ฏž๎ฌฟ๎ฏœ๎ฌพ๎ฌต
๎ตฏ+๐‘‘
๎ฏ
(๐‘ฃ
๎ฌต,๎ฏž๎ฌฟ๎ฏœ๎ฌพ๎ฌต
,๐‘ฃ
๎ฌต,๎ฌต
)
=๐‘˜โˆ’1
๐‘‘
๎ฏ
(
๐‘ง,๐‘†
๎ฌถ
๏‡ฑ
)
=min๎ต›๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏŸ,๎ฏŸ๎ฌพ๎ฌต
๎ตฏ: 1โ‰ค๐‘™โ‰ค๐‘š๎ตŸ
= ๏‰Š
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏž๎ฌฟ๎ฌต,๎ฏž
๎ตฏ, if ๐‘˜โ‰ค๐‘šโˆ’ 1,
๐‘‘
๎ฏ
๎ตซ๐‘ฃ
๎ฏœ,๎ฏž
,๐‘ฃ
๎ฏ ,๎ฏ ๎ฌพ๎ฌต
๎ตฏ, if ๐‘˜>๐‘šโˆ’1.
= ๎ตœ
๐‘˜โˆ’1 โˆ’ ๐‘–, if ๐‘˜โ‰ค๐‘š โˆ’ 1,
(
๐‘šโˆ’๐‘–
)
+(๐‘˜โˆ’๐‘šโˆ’1) if ๐‘˜>๐‘šโˆ’1.
=๐‘˜โˆ’1โˆ’๐‘–.
.
By considering the resolving 3โˆ’partition ฮ =
{๐‘†
๎ฌต
,๐‘†
๎ฌถ
,๐‘†
๎ฌท
} of a graph ๐บโ€ฒ in Theorem 3.3, we obtain
that for any vertex ๐‘ฅโˆˆ๐‘‰(๐บโ€™) where ๐‘‰(๐บโ€™) = ๐‘‰(๐ป),
then ๐‘Ÿ
(
๐‘ฅ
|
ฮ 
)
=๐‘Ÿ
(
๐‘ฅ
|
ฮ โ€ฒ
)
. Therefore, ๐‘Ÿ
(
๐‘ฅ
|
ฮ โ€ฒ
)
โ‰ 
๐‘Ÿ
(
๐‘ฆ
|
ฮ โ€ฒ
)
for any two vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐ป) and so that
ฮ โ€ฒ is a resolving partition of ๐ป.
Figure 5 represents some graphs satisfying
Theorem 3.4, namely (a) ๐ป=๐บโ€™โˆ’๐น, (b) ๐ป
๎ฌต
โŠƒ๐ป
and (c) ๐ป
๎ฌถ
โŠƒ๐ป where ๐ป
๎ฌต
=๐บโ€ฒโˆ’๐น
๎ฌต
๏‡ฑ
and ๐ป
๎ฌถ
=๐บโ€ฒโˆ’
๐น
๎ฌถ
๏‡ฑ
for some ๐น
๎ฌต
๏‡ฑ
,๐น
๎ฌถ
๏‡ฑ
โŠ†๐น. Note that from Theorem 3.4,
๐‘๐‘‘(๐ป)=๐‘๐‘‘(๐ป
๎ฌต
๏‡ฑ
)=๐‘๐‘‘(๐ป
๎ฌถ
๏‡ฑ
)=3.
Figure 5: Graphs (a) ๐ป=๐บโ€™โˆ’๐น, (b) ๐ป
๎ฌต
โŠƒ๐ป and (c) ๐ป
๎ฌถ
โŠƒ
๐ป where ๐ป
๎ฌต
=๐บโ€ฒโˆ’๐น
๎ฌต
๏‡ฑ
and ๐ป
๎ฌถ
=๐บโ€ฒโˆ’๐น
๎ฌถ
๏‡ฑ
for some
๐น
๎ฌต
๏‡ฑ
,๐น
๎ฌถ
๏‡ฑ
โŠ†๐น.
ACKNOWLEDGEMENTS
The second author thanks to the Ministry of Research
and Technology Indonesia for providing research
grant โ€Penelitian Dasar Unggulan Perguruan Tinggi
(PDUPT)โ€.
REFERENCES
Asmiati and Baskoro, E. T. (2012). Characterizing all
graphs containing cycle with the locating-chromatic
number 3. AIP Conference Proceedings, 1450:351โ€“
357.
Baskoro, E. T. and Asmiati (2013). Characterizing all trees
with locating-chromatic number 3. Electronic Journal
of Graph Theory and Applications, 1(2):109โ€“117.
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and
Zhang, P. (2002). The locating-chromatics number of a
graph. Bulletin of the Institute of Combinatorics and its
Applications, 36:89โ€“101.
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and
Zhang, P. (2003). Graph of order n with
locatingchromatics number n โˆ’ 1. Discrete
Mathematics, 269:65โ€“79.
Chartrand, G., Salehi, E., and Zhang, P. (1998). On the
partition dimension of a graph. Congressus
Numerantium, 130:157โ€“168.
Chartrand, G., Salehi, E., and Zhang, P. (2000). The
partition dimension of a graph. Aequationes
Mathematicae, 59:45โ€“54.
Haryeni, D. O., Baskoro, E. T., and Saputro, S. W. (2017).
On the partition dimension of disconnected graphs.
Journal of Mathematical and Fundamental Sciences,
49(1):18โ€“32.
Haryeni, D. O., Baskoro, E. T., and Saputro, S. W. (2019).
A method to construct graphs with certain partition
dimension. Electronic Journal of Graph Theory and
Applications, 7(2):251โ€“263.
Rodrยดฤฑguez-Velazquez, J. A., Yero, I. G., and Kuziak, D. ยด
(2016). The partition dimension of corona product
graphs. Ars Combinatoria, 127:387โ€“399.
Tomescu, I. (2008). Discrepancies between metric
dimension and partition dimension of a connected
graph. Discrete Mathematics, 308:5026โ€“5031.
Welyyanti, D., Baskoro, E. T., Simanjuntak, R., and
Uttunggadewa, S. (2014). The locating-chromatic
number of disconnected graphs. Far East Journal of
Mathematical Sciences, 94(2):169โ€“182.
Yero, I. G., Jakovac, M., Kuziak, D., and Taranenko, A.
(2014). The partition dimension of strong product
graphs and cartesian product graphs. Discrete
Mathematics, 331:43โ€“52.
Yero, I. G., Kuziak, D., and Rodrยดฤฑguez-Velazquez, J. A. ยด
(2010). A note on the partition dimension of cartesian
product graphs. Applied Mathematics and
Computation, 217:3571โ€“3574.
Graphs with Partition Dimension 3 and Locating-chromatic Number 4
19