๐
๎ฏ
(
๐ฅ,๐
๎ฌท
๏ฑ
)
=min๎ต๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฌต
,๐ฃ
๎ฏ,๎ฏ๎ฌพ๎ฌถ
๎ตฏ: 1โค๐โค๐๎ต
=๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฌต
,๐ฃ
๎ฌต,๎ฌท
๎ตฏ
=๐+ 1,
๐
๎ฏ
(
๐ฆ,๐
๎ฌต
๏ฑ
)
=min๎ต๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ,๎ฌต
๎ตฏ: 1โค๐โค๐๎ต
= ๏
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ๎ฌฟ๎ฏ๎ฌพ๎ฌต,๎ฌต
๎ตฏ, if ๐โค๐,
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฌต,๎ฌต
๎ตฏ, if ๐=๐+ 1.
= ๎ต
๐ โ 1, if ๐โค๐,
๐, if ๐=๐+ 1.
=๐โ1
๐
๎ฏ
(
๐ฆ,๐
๎ฌท
๏ฑ
)
=min๎ต๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ,๎ฏ๎ฌพ๎ฌถ
๎ตฏ: 1โค๐โค๐๎ต
= ๏
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฌต,๎ฌท
๎ตฏ, if ๐=2,
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ๎ฌฟ๎ฌถ,๎ฏ
๎ตฏ, if ๐โ 2.
= ๎ต
๐, if ๐=2,
๐โ๐+2 if ๐โ 2.
=๐+2โ๐
๐
๎ฏ
(
๐ง,๐
๎ฌต
๏ฑ
)
=min๎ต๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ,๎ฌต
๎ตฏ: 1โค๐โค๐๎ต
=๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฌต,๎ฌต
๎ตฏ
=๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฌต,๎ฏ๎ฌฟ๎ฏ๎ฌพ๎ฌต
๎ตฏ+๐
๎ฏ
(๐ฃ
๎ฌต,๎ฏ๎ฌฟ๎ฏ๎ฌพ๎ฌต
,๐ฃ
๎ฌต,๎ฌต
)
=๐โ1
๐
๎ฏ
(
๐ง,๐
๎ฌถ
๏ฑ
)
=min๎ต๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ,๎ฏ๎ฌพ๎ฌต
๎ตฏ: 1โค๐โค๐๎ต
= ๏
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ๎ฌฟ๎ฌต,๎ฏ
๎ตฏ, if ๐โค๐โ 1,
๐
๎ฏ
๎ตซ๐ฃ
๎ฏ,๎ฏ
,๐ฃ
๎ฏ ,๎ฏ ๎ฌพ๎ฌต
๎ตฏ, if ๐>๐โ1.
= ๎ต
๐โ1 โ ๐, if ๐โค๐ โ 1,
(
๐โ๐
)
+(๐โ๐โ1) if ๐>๐โ1.
=๐โ1โ๐.
.
By considering the resolving 3โpartition ฮ =
{๐
๎ฌต
,๐
๎ฌถ
,๐
๎ฌท
} of a graph ๐บโฒ in Theorem 3.3, we obtain
that for any vertex ๐ฅโ๐(๐บโ) where ๐(๐บโ) = ๐(๐ป),
then ๐
(
๐ฅ
|
ฮ
)
=๐
(
๐ฅ
|
ฮ โฒ
)
. Therefore, ๐
(
๐ฅ
|
ฮ โฒ
)
โ
๐
(
๐ฆ
|
ฮ โฒ
)
for any two vertices ๐ฅ,๐ฆ โ ๐(๐ป) and so that
ฮ โฒ is a resolving partition of ๐ป.
Figure 5 represents some graphs satisfying
Theorem 3.4, namely (a) ๐ป=๐บโโ๐น, (b) ๐ป
๎ฌต
โ๐ป
and (c) ๐ป
๎ฌถ
โ๐ป where ๐ป
๎ฌต
=๐บโฒโ๐น
๎ฌต
๏ฑ
and ๐ป
๎ฌถ
=๐บโฒโ
๐น
๎ฌถ
๏ฑ
for some ๐น
๎ฌต
๏ฑ
,๐น
๎ฌถ
๏ฑ
โ๐น. Note that from Theorem 3.4,
๐๐(๐ป)=๐๐(๐ป
๎ฌต
๏ฑ
)=๐๐(๐ป
๎ฌถ
๏ฑ
)=3.
Figure 5: Graphs (a) ๐ป=๐บโโ๐น, (b) ๐ป
๎ฌต
โ๐ป and (c) ๐ป
๎ฌถ
โ
๐ป where ๐ป
๎ฌต
=๐บโฒโ๐น
๎ฌต
๏ฑ
and ๐ป
๎ฌถ
=๐บโฒโ๐น
๎ฌถ
๏ฑ
for some
๐น
๎ฌต
๏ฑ
,๐น
๎ฌถ
๏ฑ
โ๐น.
ACKNOWLEDGEMENTS
The second author thanks to the Ministry of Research
and Technology Indonesia for providing research
grant โPenelitian Dasar Unggulan Perguruan Tinggi
(PDUPT)โ.
REFERENCES
Asmiati and Baskoro, E. T. (2012). Characterizing all
graphs containing cycle with the locating-chromatic
number 3. AIP Conference Proceedings, 1450:351โ
357.
Baskoro, E. T. and Asmiati (2013). Characterizing all trees
with locating-chromatic number 3. Electronic Journal
of Graph Theory and Applications, 1(2):109โ117.
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and
Zhang, P. (2002). The locating-chromatics number of a
graph. Bulletin of the Institute of Combinatorics and its
Applications, 36:89โ101.
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., and
Zhang, P. (2003). Graph of order n with
locatingchromatics number n โ 1. Discrete
Mathematics, 269:65โ79.
Chartrand, G., Salehi, E., and Zhang, P. (1998). On the
partition dimension of a graph. Congressus
Numerantium, 130:157โ168.
Chartrand, G., Salehi, E., and Zhang, P. (2000). The
partition dimension of a graph. Aequationes
Mathematicae, 59:45โ54.
Haryeni, D. O., Baskoro, E. T., and Saputro, S. W. (2017).
On the partition dimension of disconnected graphs.
Journal of Mathematical and Fundamental Sciences,
49(1):18โ32.
Haryeni, D. O., Baskoro, E. T., and Saputro, S. W. (2019).
A method to construct graphs with certain partition
dimension. Electronic Journal of Graph Theory and
Applications, 7(2):251โ263.
Rodrยดฤฑguez-Velazquez, J. A., Yero, I. G., and Kuziak, D. ยด
(2016). The partition dimension of corona product
graphs. Ars Combinatoria, 127:387โ399.
Tomescu, I. (2008). Discrepancies between metric
dimension and partition dimension of a connected
graph. Discrete Mathematics, 308:5026โ5031.
Welyyanti, D., Baskoro, E. T., Simanjuntak, R., and
Uttunggadewa, S. (2014). The locating-chromatic
number of disconnected graphs. Far East Journal of
Mathematical Sciences, 94(2):169โ182.
Yero, I. G., Jakovac, M., Kuziak, D., and Taranenko, A.
(2014). The partition dimension of strong product
graphs and cartesian product graphs. Discrete
Mathematics, 331:43โ52.
Yero, I. G., Kuziak, D., and Rodrยดฤฑguez-Velazquez, J. A. ยด
(2010). A note on the partition dimension of cartesian
product graphs. Applied Mathematics and
Computation, 217:3571โ3574.