REFERENCES
Ardiansyah, H., Rivai, M., and Nurabdi, L. (2018). Train
arrival warning system at railroad crossing using ac-
celerometer sensor and neural network. In AIP Con-
ference Proceedings, page 040029–1.
Bulletti, A., Borgioli, G., Calzolai, M., Capineri, L.,
and Mazzoni, M. (2010). Acoustoseismic method
for buried-object detection by means of surface-
acceleration measurements and audio facilities. IEEE
Trans. Geosci. Remote Sens, 48(8):3134.
John (2011). Mems accelerometer. http:
//www.instrumentationtoday.com/
mems-accelerometer/2011/08. [Online; Ac-
cessed 23-June-2019].
Kova
ˇ
cevi
´
c, S., Pe
ˇ
si
´
c-Brdjanin, T., and Gali
´
c, J. (2018).
Class d audio amplifier with reduced distortion. Int.
Symp. Ind. Electron. INDEL.
Maqsud, A. and Daku, B. (2005). Characterization of a
mems accelerometer for an underground mine posi-
tioning system. In Canadian Conference on Electrical
and Computer Engineering, page 2268.
Martin, J., Scott, W., and Larson, G. (2001). Experimen-
tal model for a seismic landmine detection system.
IEEE Transactions on Geoscience and Remote Sens-
ing, 39(6):1155.
Rivai, M., Arifin, A., and Agustin, E. (2016). Mixed vapour
identification using partition column-qcms and artifi-
cial neural network. In International Conference on
Information, Communication Technology and System,
page 172.
Rivai, M., Talakua, E., and L. (2014). The implementation
of preconcentrator in electronic nose system to iden-
tify low concentration of vapors using neural network
method. International Conference on Information,
Communication Technology and System, page 31.
Rivai, M. and Tasripan (2015). Fuel qualification using
quartz sensors. ARPN Journal of Engineering and Ap-
plied Sciences, 10(16):6737.
Song, K., Tong, S., Ding, Z., and Dong, L. (2017). An
electromagnetic feedback method to improve low-
frequency response performance of geophone. In
Proc. IEEE Sensors, page 5.
Sutin, A., Johnson, P., Tencate, J., and Sarvazyan, A.
(2005). Land mine detection by time reversal acousto-
seismic method time reversal acousto-seismic method
for land mine detection. In Proc. of Society of Photo-
Optical Instrumentation Engineers, page 706.
Winjaya, F., Rivai, M., and Purwanto, D. (2017). Identifi-
cation of cracking sound during coffee roasting using
neural network. International Seminar on Intelligent
Technology and Its Application, page 271.
Yoshiyuki, T., Tsuyushi, M., Cheol, H., Seiji, S., Kiyosi,
Y., Kai, M., and Teruhisa, T. (2007). Development
of landmine detection system using scintillators by
measuring radiations from landmine. IEEE Nucl. Sci.
Symp. Conf. Rec, page 273.
Buried Object Detection based on Acousto-seismic Method using Accelerometer and Neural Network
257