The results of this study can be summarized by us-
ing method FAHP and TOPSIS can be used as an indi-
cator and is expected to solve the existing problems in
the performance assessment of non-permanent teach-
ers. The results of this calculation serve as a reference
by principals in determining the performance of non
-permanent teachers and the final decision remains on
the principal.
In the decision-making process involving many
criteria, the Fuzzy AHP method can be used to de-
termine the priority weight on each of the criteria
on which the appropriate decision analysis is based.
From the results of priority weighting analysis on the
main criteria with Fuzzy AHP, pedagogic criteria have
a weight of 44.8%, personality criteria 26.1%, social
criteria 16.5%, and professional criteria 12.5%. The
use of the TOPSIS method is used for determining the
weight of each alternative ranking of candidate non-
permanent teachers
REFERENCES
Alizadeh, S., Rad, M. M. S., and Bazzazi, A. A. (2016).
Alunite processing method selection using the ahp and
topsis approaches under fuzzy environment. Inter-
national Journal of Mining Science and Technology,
26(6):1017–1023.
Arfa, R. K. D., Kandou, L., and Munayang, H. (2013). Per-
bandingan kejadian dan tingkat depresi guru honorer
di sekolah dasar negeri pada empat kecamatan di kota
kotamobagu provinsi sulawesi utara. eBiomedik, 1(1).
Balkis, A. S. and Masykur, A. M. (2017). Memahami sub-
jective well-being guru honorer sekolah dasar negeri
(sebuah studi kualitatif fenomenologis). Empati,
5(2):223–228.
Galankashi, M. R., Moffarahi, M., Hisjam, M., and Helmi,
S. A. (2016). Feasibility study of industrial projects:
A fuzzy ahp approach. In 2016 2nd International
Conference of Industrial, Mechanical, Electrical, and
Chemical Engineering (ICIMECE), pages 118–122.
IEEE.
Hanine, M., Boutkhoum, O., Tikniouine, A., and Agouti, T.
(2016). A new web-based framework development for
fuzzy multi-criteria group decision-making. Springer-
Plus, 5(1):601.
HARIWIBOWO, H., Rosalinda, I., and Khair, A. S. (2015).
Motivasi kerja guru honorer ditinjau dari quality of
work life. JPPP-Jurnal Penelitian dan Pengukuran
Psikologi, 4(1):23–27.
Junior, F. R. L., Osiro, L., and Carpinetti, L. C. R. (2014). A
comparison between fuzzy ahp and fuzzy topsis meth-
ods to supplier selection. Applied Soft Computing,
21:194–209.
Keprate, A. and Ratnayake, R. C. (2016). Determining
the degree of fuzziness for fuzzy-ahp methodology
used for identifying fatigue critical piping locations
for inspection. In 2016 IEEE 20th Jubilee Interna-
tional Conference on Intelligent Engineering Systems
(INES), pages 165–172. IEEE.
Khademolqorani, S. and Hamadani, A. Z. (2013). An
adjusted decision support system through data min-
ing and multiple criteria decision making. Procedia-
Social and Behavioral Sciences, 73:388–395.
Mahmudah, M., Holilulloh, H., and Nurmalisa, Y.
(2015). Persepsi guru honorer terhadap undang-
undang nomor 5 tahun 2014 tentang sistem pppk. Ju-
rnal Kultur Demokrasi, 3(5).
Meiza, C. (2017). Perbedaan kebahagiaan pada guru bersta-
tus pns dan honorer. Jurnal Psikologi, 9(2).
Mohyeddin, M. A. and Gharaee, H. (2014). Fahp-topsis
risks ranking models in isms. In 7’th International
Symposium on Telecommunications (IST’2014), pages
879–882. IEEE.
Prakash, C. and Barua, M. (2015). Integration of ahp-
topsis method for prioritizing the solutions of re-
verse logistics adoption to overcome its barriers under
fuzzy environment. Journal of Manufacturing Sys-
tems, 37:599–615.
Primasari, C. H. and Setyohadi, D. B. (2017). Financial
analysis and topsis implementation for selecting the
most profitable investment proposal in goat farming.
In 2017 2nd International conferences on Information
Technology, Information Systems and Electrical Engi-
neering (ICITISEE), pages 51–56. IEEE.
Salah, N. B. and Saadi, I. B. (2016). Fuzzy ahp for
learning service selection in context-aware ubiquitous
learning systems. In 2016 Intl IEEE Conferences
on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
pages 171–179. IEEE.
Sudiatmika, I. B. K., Jimbara, R., and Setyohadi, D. B.
(2017). Determination of assistance to the poor by
integrating fuzzy ahp and topsis models:(case study
bali province). In 2017 1st International Conference
on Informatics and Computational Sciences (ICICoS),
pages 95–100. IEEE.
Supiandi, A. (2016). Penerapan fuzzy analytic hierarchy
process untuk menentukan kinerja guru dalam pemil-
ihan kelayakan kenaikan pangkat dan tenaga kontrak.
In Seminar Nasional Ilmu Pengetahuan dan Teknologi
Komputer, pages 95–INF.
Taylan, O., Bafail, A. O., Abdulaal, R. M., and Kabli, M. R.
(2014). Construction projects selection and risk as-
sessment by fuzzy ahp and fuzzy topsis methodolo-
gies. Applied Soft Computing, 17:105–116.
Vinodh, S., Prasanna, M., and Prakash, N. H. (2014). In-
tegrated fuzzy ahp–topsis for selecting the best plastic
recycling method: A case study. Applied Mathemati-
cal Modelling, 38(19-20):4662–4672.
Yudatama, U. and Sarno, R. (2015). Evaluation maturity
index and risk management for it governance using
fuzzy ahp and fuzzy topsis (case study bank xyz). In
2015 International Seminar on Intelligent Technology
and Its Applications (ISITIA), pages 323–328. IEEE.
CONRIST 2019 - International Conferences on Information System and Technology
104