REFERENCES
Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T.,
Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston,
B., et al. (2010). The youtube video recommendation
system. In Proceedings of the fourth ACM conference
on Recommender systems, pages 293–296.
F. Ricci, L. R. and Saphira, B. (2011). Recommender sys-
tems handbook.
Gomez-Uribe, C. A. and Hunt, N. (2015). The netflix rec-
ommender system: Algorithms, business value, and
innovation. ACM Transactions on Management Infor-
mation Systems (TMIS), 6(4):1–19.
HANAFI, SURYANA, N., BASARI, A. S. B. H., et al.
(2018). Hybridization approach to eliminate sparse
data based on nonnegative matrix factorization & deep
learning. Journal of Theoretical & Applied Informa-
tion Technology, 96(14).
Hanafi, SURYANA, N., BASARI, H., BIN, A. S., et al.
(2018). An understanding and approach solution for
cold start problem associated with recommender sys-
tem: A literature review. Journal of Theoretical &
Applied Information Technology, 96(9).
Harper, F. M. and Konstan, J. A. (2015). The movielens
datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4):1–19.
Jaradat, S. (2017). Deep cross-domain fashion recommen-
dation. In Proceedings of the Eleventh ACM Confer-
ence on Recommender Systems, pages 407–410.
Jolly, P. (1982). Nickel catalyzed coupling of organic
halides and related reactions.
Kim, D., Park, C., Oh, J., Lee, S., and Yu, H. (2016). Con-
volutional matrix factorization for document context-
aware recommendation. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages
233–240.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Ling, G., Lyu, M. R., and King, I. (2014). Ratings meet
reviews, a combined approach to recommend. In Pro-
ceedings of the 8th ACM Conference on Recommender
systems, pages 105–112.
Liu, J., Wang, D., and Ding, Y. (2017). Phd: a probabilistic
model of hybrid deep collaborative filtering for rec-
ommender systems. In Asian Conference on machine
learning, pages 224–239.
Mnih, A. and Salakhutdinov, R. R. (2008). Probabilistic
matrix factorization. In Advances in neural informa-
tion processing systems, pages 1257–1264.
Park, K., Lee, J., and Choi, J. (2017). Deep neural net-
works for news recommendations. In Proceedings
of the 2017 ACM on Conference on Information and
Knowledge Management, pages 2255–2258.
Piczak, K. J. (2015). Environmental sound classification
with convolutional neural networks. In 2015 IEEE
25th International Workshop on Machine Learning for
Signal Processing (MLSP), pages 1–6. IEEE.
Ricci, F., Rokach, L., and Shapira, B. (2015). Recom-
mender systems: introduction and challenges. In Rec-
ommender systems handbook, pages 1–34. Springer.
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001).
Item-based collaborative filtering recommendation al-
gorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295.
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2002).
Incremental singular value decomposition algorithms
for highly scalable recommender systems. In Fifth in-
ternational conference on computer and information
science, volume 1. Citeseer.
Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). E-
commerce recommendation applications. Data min-
ing and knowledge discovery, 5(1-2):115–153.
Trevisiol, M., Aiello, L. M., Schifanella, R., and Jaimes,
A. (2014). Cold-start news recommendation with
domain-dependent browse graph. In Proceedings of
the 8th ACM Conference on Recommender systems,
pages 81–88.
Van den Oord, A., Dieleman, S., and Schrauwen, B.
(2013). Deep content-based music recommendation.
In Advances in neural information processing sys-
tems, pages 2643–2651.
Wang, C. and Blei, D. M. (2011). Collaborative topic
modeling for recommending scientific articles. In
Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 448–456.
Wang, H., Shi, X., and Yeung, D.-Y. (2015a). Relational
stacked denoising autoencoder for tag recommenda-
tion. In Twenty-ninth AAAI conference on artificial
intelligence.
Wang, H., Wang, N., and Yeung, D.-Y. (2015b). Collab-
orative deep learning for recommender systems. In
Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 1235–1244.
Wang, X. and Wang, Y. (2014). Improving content-based
and hybrid music recommendation using deep learn-
ing. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 627–636.
Yi, P., Yang, C., Zhou, X., and Li, C. (2016). A movie
cold-start recommendation method optimized simi-
larity measure. In 2016 16th International Sympo-
sium on Communications and Information Technolo-
gies (ISCIT), pages 231–234. IEEE.
Zhang, S., Wang, W., Ford, J., and Makedon, F. (2006).
Learning from incomplete ratings using non-negative
matrix factorization. In Proceedings of the 2006 SIAM
international conference on data mining, pages 549–
553. SIAM.
Zhou, K., Yang, S.-H., and Zha, H. (2011). Functional
matrix factorizations for cold-start recommendation.
In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Informa-
tion Retrieval, pages 315–324.
Exploit Multi Layer Deep Learning and Latent Factor to Handle Sparse Data for E-commerce Recommender System
351