Sviluppo”—POR FESR6832014-2020—Asse 1,
Azione 1.1.3. Project VideoBrain- Intelligent Video
Optmization.
REFERENCES
Ames, M. and Naaman, M. (2007). Why We Tag: Moti-
vations for Annotation in Mobile and Online Media.
CHI ’07. Association for Computing Machinery, New
York, NY, USA.
Ballan, L., Bertini, M., Serra, G., and Bimbo, A. D. (2015).
A data-driven approach for tag refinement and local-
ization in web videos. Comput. Vis. Image Underst.,
140(C):58–67.
Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python. O’Reilly Media, Inc., 1st edi-
tion.
Carneiro, H. A. and Mylonakis, E. (2009). Google trends:
a web-based tool for real-time surveillance of disease
outbreaks. Clinical infectious diseases, 49(10):1557–
1564.
Carta, S., Gaeta, E., Giuliani, A., Piano, L., and Recu-
pero, D. R. (2020). Efficient thumbnail identification
through object recognition. Proceedings of the WE-
BIST 2020 - 16th International Conference on Web
Information Systems and Technologies.
Chen, Z., Cao, J., Song, Y., Guo, J., Zhang, Y., and Li, J.
(2010). Context-oriented web video tag recommenda-
tion. CoRR, abs/1003.4637.
Choi, H. and Varian, H. (2012). Predicting the present with
google trends. Economic record, 88:2–9.
Consoli, S., Mongiovi, M., Nuzzolese, A., Peroni, S., Pre-
sutti, V., Recupero, D., and Spampinato, D. (2015). A
smart city data model based on semantics best practice
and principles. pages 1395–1400. cited By 18.
Consoli, S., Presutti, V., Reforgiato Recupero, D., Nuz-
zolese, A., Peroni, S., Mongiovi’, M., and Gangemi,
A. (2017). Producing linked data for smart cities: The
case of catania. Big Data Research, 7:1–15. cited By
18.
Cristani, M. and Tomazzoli, C. (2014). A multimodal ap-
proach to exploit similarity in documents. In Pro-
ceedings, Part I, of the 27th International Conference
on Modern Advances in Applied Intelligence - Volume
8481, IEA/AIE 2014, page 490–499, Berlin, Heidel-
berg. Springer-Verlag.
Cristani, M. and Tomazzoli, C. (2016). A multimodal ap-
proach to relevance and pertinence of documents. In
Fujita, H., Ali, M., Selamat, A., Sasaki, J., and Kure-
matsu, M., editors, Trends in Applied Knowledge-
Based Systems and Data Science, pages 157–168,
Cham. Springer International Publishing.
Deza, M. and Deza, E. (2014). Encyclopedia of Distances.
Springer Berlin Heidelberg.
Filippova, K. and Hall, K. B. (2011). Improved video cat-
egorization from text metadata and user comments.
In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Informa-
tion - SIGIR ’11, page 835, New York, New York,
USA. ACM Press.
J
¨
arvelin, K. and Kek
¨
al
¨
ainen, J. (2002). Cumulated gain-
based evaluation of ir techniques. ACM Trans. Inf.
Syst., 20(4):422–446.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. (2002). An ef-
ficient k-means clustering algorithm: analysis and im-
plementation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):881–892.
Khan, U. A., Mart
´
ınez-Del-Amor, M.
´
A., Altowaijri, S. M.,
Ahmed, A., Rahman, A. U., Sama, N. U., Haseeb, K.,
and Islam, N. (2020). Movie tags prediction and seg-
mentation using deep learning. IEEE Access, 8:6071–
6086.
Konjengbam, A., Kumar, N., and Singh, M. (2019). Un-
supervised tag recommendation for popular and cold
products. Journal of Intelligent Information Systems,
54:545 – 566.
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., and Bizer, C. (2015).
DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal,
6(2):167–195.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013). Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’13, page
3111–3119, Red Hook, NY, USA. Curran Associates
Inc.
Miller, G. A. (1995). Wordnet: A lexical database for en-
glish. Commun. ACM, 38(11):39–41.
Mukherjee, S. and Bhattacharyya, P. (2012). Youcat:
Weakly supervised youtube video categorization sys-
tem from meta data & user comments using wordnet
& wikipedia. In COLING.
Presutti, V., Consoli, S., Nuzzolese, A., Recupero, D.,
Gangemi, A., Bannour, I., and Zargayouna, H. (2014).
Uncovering the semantics of wikipedia pagelinks.
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 8876:413–428. cited
By 19.
Santos-Neto, E., Pontes, T., Almeida, J., and Ripeanu, M.
(2014). On the choice of data sources to improve con-
tent discoverability via textual feature optimization. In
Proceedings of the 25th ACM Conference on Hyper-
text and Social Media, HT ’14, page 273–278, New
York, NY, USA. Association for Computing Machin-
ery.
Shen, J., Wang, M., and Chua, T. (2016). Accurate online
video tagging via probabilistic hybrid modeling. Mul-
timedia Syst., 22(1):99–113.
Siersdorfer, S., San Pedro, J., and Sanderson, M. (2009).
Automatic video tagging using content redundancy.
In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in informa-
WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies
192