Table 4: Semantic analysis results of the 1,901 word definitions.
Phenomenon N. of definitions Perc. (%)
Presence of synonyms 599 out of 1,901 31.51%
Presence of hypernyms (direct) 583 out of 1,901 30.67%
Presence of hypernyms (2nd level) 996 out of 1,901 52.39%
Presence of hypernyms (3rd level) 1,254 out of 1,901 65,97%
Presence of hypernyms (all) 1,685 out of 1,901 88,63%
Presence of meronyms 201 out of 1,901 10.57%
Presence of purpose-relations 207 out of 1,901 10.89%
from different sources about 300 concrete concepts
highlighted possible features for their automatic gen-
eration and extraction from large corpora.
REFERENCES
Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The
berkeley framenet project. In Proc. of ACL, pages 86–
90. Association for Computational Linguistics.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022.
Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword infor-
mation. arXiv preprint arXiv:1607.04606.
Bond, F. and Foster, R. (2013). Linking and extending an
open multilingual wordnet. In ACL (1), pages 1352–
1362.
Brown, R. and McNeill, D. (1966). The “tip of the tongue”
phenomenon. Journal of verbal learning and verbal
behavior, 5(4):325–337.
Burgess, J. A. (2007). When is circularity in definitions
benign? The Philosophical Quarterly, 58(231):214–
233.
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., H. Jr,
E. R., and Mitchell, T. M. (2010). Toward an archi-
tecture for never-ending language learning. In AAAI,
volume 5, page 3.
Devereux, B. J., Tyler, L. K., Geertzen, J., and Randall, B.
(2014). The cslb concept property norms. Behavior
research methods, 46(4):1119–1127.
Dumais, S. T. (2004). Latent semantic analysis. An-
nual review of information science and technology,
38(1):188–230.
Fillmore, C. J. (1977). Scenes-and-frames semantics. Lin-
guistic structures processing, 59:55–88.
G
¨
ardenfors, P. (2004). Conceptual spaces: The geometry of
thought. MIT press.
Harris, Z. S. (1954). Distributional structure. Word, 10(2-
3):146–162.
Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y.
(2012). Improving word representations via global
context and multiple word prototypes. In Proc. of
ACL, pages 873–882.
Iacobacci, I., Pilehvar, M. T., and Navigli, R. (2015).
Sensembed: learning sense embeddings for word and
relational similarity. In Proceedings of ACL, pages
95–105.
Klavans, J. L., Popper, S., and Passonneau, R. (2003). Tack-
ling the internet glossary glut: Automatic extraction
and evaluation of genus phrases. In Proceedings of
Semantic Web Workshop, SIGIR.
Leone, V., Siragusa, G., Di Caro, L., and Navigli, R. (2020).
Building semantic grams of human knowledge. In
Proceedings of The 12th Language Resources and
Evaluation Conference, pages 2991–3000.
McNamara, D. S., Crossley, S. A., and McCarthy, P. M.
(2010). Linguistic features of writing quality. Written
communication, 27(1):57–86.
McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan,
C. (2005). Semantic feature production norms for a
large set of living and nonliving things. Behav. r. m.,
37(4):547–559.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Moerdijk, F., Tiberius, C., and Niestadt, J. (2008). Access-
ing the anw dictionary. In Proc. of the workshop on
Cognitive Aspects of the Lexicon, pages 18–24.
Muresan, S. and Klavans, J. (2002). A method for automat-
ically building and evaluating dictionary resources. In
LREC, volume 2, pages 231–234.
Navigli, R. and Ponzetto, S. P. (2010). Babelnet: Building a
very large multilingual semantic network. In Proc. of
ACL, pages 216–225. Association for Computational
Linguistics.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
EMNLP, volume 14, pages 1532–43.
Silberer, C., Ferrari, V., and Lapata, M. (2013). Models
of semantic representation with visual attributes. In
Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 572–582.
Speer, R., Chin, J., and Havasi, C. (2016). Conceptnet
5.5: An open multilingual graph of general knowl-
edge. arXiv preprint arXiv:1612.03975.
Speer, R. and Havasi, C. (2012). Representing general re-
lational knowledge in ConceptNet 5. In LREC, pages
3679–3686.
Strehlow, R. A. (1983). Terminology and the well-formed
What’s in a Definition? An Investigation of Semantic Features in Lexical Dictionaries
231