Heder, M., 2017. From NASA to EU: the evolution of the
TRL scale in Public Sector Innovation. The Innovation
Journal: The Public Sector Innovation Journal, 22(2),
pp. 1-23.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S. and Murphy, K., 2017. Speed/accuracy trade-offs for
modern convolutional object detectors. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 3296-3297).
https://github.com/tensorflow/models/tree/master/rese
arch/object_detection
Inoue, N., Furuta, R., Yamasaki, T. and Aizawa, K., 2018.
Cross-domain weakly-supervised object detection
through progressive domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 5001-5009).
Jocher, G., 2020. YOLOv5. https://github.com/ultra
lytics/yolov5
Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S. and Houlsby N., 2020. Big Transfer (BiT):
General visual representation learning. arXiv preprint
arXiv:1912.11370.
Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., Duerig, T. and Ferrari, V., 2020. The
Open Images Dataset V4: Unified image classification,
object detection, and visual relationship detection at
scale. International Journal of Computer Vision, 128,
pp. 1956-1981.
Libutti, L. A., Igual, F. D., Pinuel, L., De Giusti, L. and
Naiouf, M., 2020. Benchmarking performance and
power of USB accelerators for inference with MLPerf.
In Proceedings of the Workshop on Accelerated
Machine Learning (AccML).
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P., Zitnick, C. L., 2014. Microsoft
COCO: Common Objects in Context. In Proceedings of
the European Conference on Computer Vision, LNCS
(Vol. 8693, pp. 740-755).
Mahony, N. O., Campbell, S., Carvalho, A., Harapanahalli,
S., Hernandez, G. V., Krpalkova, L., Riordan, D. and
Walsh, J., 2019. Deep learning vs. traditional computer
vision. In Proceedings of the Science and Information
Conference (pp. 128-144).
Pinheiro, P. O., 2018. Unsupervised domain adaptation
with similarity learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 8004-8013).
Reddi, Y. J., Cheng, C., Kanter, D., Mattson. P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., Chukka, R., Coleman, C.,
Davis, S., Deng, P., Diamos, G., Duke, J., Fick, D.,
Gardner, J. S., Hubara, I., Idgunji, S., Jablin, T. B., Jiao,
J., St. John, T., Kanwar, P., Lee, D., Liao, J.,
Lokhmotov, A., Massa, F., Meng, P., Micikevicius, P.,
Osborne, C., Pekhimenko, G., Rajan, A. T. R.,
Sequeira, D., Sirasao, A., Sun, F., Tang, H., Thomson,
M., Wei, F., Wu, E., Xu, L., Yamada, K., Yu, B., Yuan,
G., Zhong, A., Zhang, P. and Zhou, Y., 2019. MLPerf
inference benchmark. arXiv preprint
arXiv:1911.02549.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C. and Fei-Fei, L., 2015. ImageNet large
scale visual recognition challenge. International
Journal of Computer Vision, 115, pp. 211-252.
Tan, M., Pang, R. and Le, Q. V., 2020. EfficientDet:
Scalable and efficient object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 10781-10790).
Vicomtech, 2020. VCD - Video Content Description.
https://github.com/Vicomtech/video-content-
description-VCD
Wang, W., Yang, Y., Wang, X., Wang, W. and Li, J., 2019.
Development of convolutional neural network and its
application in image classification: A survey. Optical
Engineering, 58(4), 040901.
Yang, Y., Zhou, D-W., Zhan, D., Xiong, H. and Jiang, Y.,
2019. Adaptive deep models for incremental learning:
considering capacity scalability and sustainability. In
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining
(pp. 74-82).
Zhao, Z., Zheng, P., Xu, S. and Wu, X., 2019. Object
detection with deep learning: A review. IEEE
Transactions on Neural Networks and Learning
Systems, 30(11), pp. 3212-3232.
Building a Camera-based Smart Sensing System for Digitalized On-demand Aircraft Cabin Readiness Verification