de Aquino, G. R. C., de Farias, C. M., and Pirmez, L.
(2019). Hygieia: data quality assessment for smart
sensor network. In Hung, C. and Papadopoulos, G. A.,
editors, Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, SAC 2019, Limassol,
Cyprus, April 8-12, 2019, pages 889–891. ACM.
Ferreira, E. and Ferreira, D. (2017). Towards altruis-
tic data quality assessment for mobile sensing. In
Lee, S. C., Takayama, L., and Truong, K. N., ed-
itors, Adjunct Proceedings of the 2017 ACM Inter-
national Joint Conference on Pervasive and Ubiqui-
tous Computing and Proceedings of the 2017 ACM In-
ternational Symposium on Wearable Computers, Ubi-
Comp/ISWC 2017, Maui, HI, USA, September 11-15,
2017, pages 464–469. ACM.
Fishbain, B., Lerner, U., Castell, N., Cole-Hunter, T.,
Popoola, O., Broday, D., I
˜
niguez, T., Nieuwenhuijsen,
M., Jova
ˇ
sevi
´
c-Stojanovi
´
c, M., Topalovic, D., Jones,
R., Galea, K., Etzion, Y., Kizel, F., Golumbic, Y.,
Baram Tsabari, A., Yacobi, T., Drahler, D., Robinson,
J., and Bartonova, A. (2017). An evaluation tool kit of
air quality micro-sensing units.
Han, Q., Hakkarinen, D., Boonma, P., and Suzuki, J. (2010).
Quality-aware sensor data collection. International
Journal of Sensor Networks, 7(3):127.
Klein, A., Do, H. H., Hackenbroich, G., Karnstedt, M.,
and Lehner, W. (2007). Representing data quality for
streaming and static data. Proceedings - International
Conference on Data Engineering, (January 2014):3–
10.
Languille, B., Gros, V., Bonnaire, N., Pommier, C.,
Honor
´
e, C., Debert, C., Gauvin, L., Srairi, S., Annesi-
Maesano, I., Chaix, B., and Zeitouni, K. (2020). A
methodology for the characterization of portable sen-
sors for air quality measure with the goal of deploy-
ment in citizen science. Science of The Total Environ-
ment, 708:134698.
Liu, C., Nitschke, P., Williams, S., and Zowghi, D. (2019).
Data quality and the internet of things. Computing.
Mustapha, A., Zeitouni, K., and Taher, Y. (2018). To-
wards rich sensor data representation - functional data
analysis framework for opportunistic mobile monitor-
ing. In Grueau, C., Laurini, R., and Ragia, L., edi-
tors, Proceedings of the 4th International Conference
on Geographical Information Systems Theory, Appli-
cations and Management, GISTAM 2018, Funchal,
Madeira, Portugal, March 17-19, 2018, pages 290–
295. SciTePress.
Nemani, R. R. and Konda, R. (2009). A framework for
data quality in data warehousing. In Yang, J., Ginige,
A., Mayr, H. C., and Kutsche, R., editors, Information
Systems: Modeling, Development, and Integration,
Third International United Information Systems Con-
ference, UNISCON 2009, Sydney, Australia, April 21-
24, 2009. Proceedings, volume 20 of Lecture Notes
in Business Information Processing, pages 292–297.
Springer.
¨
Ostman, A. (1997). The specification and evaluation of spa-
tial data quality. Proceedings of the 18st International
Cartographic Conference, pages 836–847.
Rahman, A., Smith, D. V., and Timms, G. (2014). A novel
machine learning approach toward quality assessment
of sensor data. IEEE Sensors Journal, 14(4):1035–
1047.
Ray, C. (2018). Data variety and integrity assessment for
maritime anomaly detection. CEUR Workshop Pro-
ceedings, 2343:4–7.
Rodr
´
ıguez, C. C. G. and Servigne, S. (2013). Managing
Sensor Data Uncertainty. International Journal of
Agricultural and Environmental Information Systems,
4(1):35–54.
Seo, S., Mohegh, A., Ban-Weiss, G., and Liu, Y. (2018).
Automatically inferring data quality for spatiotempo-
ral forecasting. In International Conference on Learn-
ing Representations.
Sidi, F., Panah, P. H. S., Affendey, L. S., Jabar, M. A.,
Ibrahim, H., and Mustapha, A. (2012). Data qual-
ity: A survey of data quality dimensions. In Mah-
mod, R., Abdullah, R., Abdullah, L. N., Sembok, T.
M. T., Smeaton, A. F., Crestani, F., Doraisamy, S.,
Kadir, R. A., and Ismail, M., editors, 2012 Interna-
tional Conference on Information Retrieval & Knowl-
edge Management, Kuala Lumpur, Malaysia, March
13-15, 2012, pages 300–304. IEEE.
Wang, L., Zhang, D., Wang, Y., Chen, C., Han, X., and
M’Hamed, A. (2016). Sparse mobile crowdsensing:
Challenges and opportunities. IEEE Communications
Magazine, 54(7):161–167.
WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies
138