human users. In Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining 2017, ASONAM ’17,
pages 489–496, New York, NY, USA. ACM.
Guimaraes, N., Figueira, A., and Torgo, L. (2020). Analy-
sis and Detection of Unreliable Users in Twitter: Two
Case Studies. Number June in Knowledge Discov-
ery, Knowledge Engineering and Knowledge Manage-
ment. Springer International Publishing.
Guimar
˜
aes, N.,
´
Alvaro Figueira, and Torgo, L. (2018). Con-
tributions to the detection of unreliable twitter ac-
counts through analysis of content and behaviour. In
Proceedings of the 10th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management - Volume 1: KDIR,,
pages 92–101. INSTICC, SciTePress.
Hajian, B. and White, T. (2011). Modelling influence in a
social network: Metrics and evaluation. In 2011 IEEE
Third International Conference on Privacy, Security,
Risk and Trust and 2011 IEEE Third International
Conference on Social Computing, pages 497–500.
Helmstetter, S. and Paulheim, H. (2018). Weakly super-
vised learning for fake news detection on Twitter. Pro-
ceedings of the 2018 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and
Mining, ASONAM 2018, pages 274–277.
Horne, B. D., NØrregaard, J., and Adali, S. (2019). Ro-
bust fake news detection over time and attack. ACM
Transactions on Intelligent Systems and Technology,
11(1):1–23.
Margolin, J. and Thorbecke, C. (2020). Twitter removes
account of white nationalist group posing as an-
tifa online. https://abcnews.go.com/US/twitter-
removes-account-white-nationalist-group-posing-
antifa/story?id=71024345. Acessed: 2020-07-07.
Mu
˜
noz-Exp
´
osito, M., Oviedo-Garc
´
ıa, M.
´
A., and
Castellanos-Verdugo, M. (2017). How to mea-
sure engagement in Twitter: advancing a metric.
Internet Research, 27(5):1122–1148.
Nagmoti, R., Teredesai, A., and De Cock, M. (2010). Rank-
ing approaches for microblog search. Proceedings
- 2010 IEEE/WIC/ACM International Conference on
Web Intelligence, WI 2010, 1(Section III):153–157.
Newman, N. (2011). Mainstream media and the distribution
of news in the age of social media. Technical report.
Nikolov, D., Oliveira, D. F., Flammini, A., and Menczer,
F. (2015). Measuring online social bubbles. PeerJ
Computer Science, 2015(12):1–14.
Pal, A. and Counts, S. (2011). Identifying topical authori-
ties in microblogs. Proceedings of the 4th ACM Inter-
national Conference on Web Search and Data Mining,
WSDM 2011, pages 45–54.
Quattrociocchi, W., Scala, A., and Sunstein, C. R. (2016).
Echo Chambers on Facebook.
Razis, G. and Anagnostopoulos, I. (2014). Influencetracker:
Rating the impact of a twitter account. In Iliadis,
L., Maglogiannis, I., Papadopoulos, H., Sioutas, S.,
and Makris, C., editors, Artificial Intelligence Appli-
cations and Innovations, pages 184–195, Berlin, Hei-
delberg. Springer Berlin Heidelberg.
Riquelme, F. and Gonz
´
alez-Cantergiani, P. (2016). Measur-
ing user influence on Twitter: A survey. Information
Processing and Management, 52(5):949–975.
Twitter (2018a). Twitter - search api. ”https:
//developer.twitter.com/en/docs/tweets/search/api-
reference/get-search-tweets”. [Accessed: 2018-05-
07].
Twitter (2018b). Twitter verified. https://twitter.com/
verified. Acessed: 2018-05-17.
Varol, O., Ferrara, E., Davis, C., Menczer, F., and Flammini,
A. (2017a). Online human-bot interactions: Detec-
tion, estimation, and characterization. In Proceedings
of the International AAAI Conference on Web and So-
cial Media.
Varol, O., Ferrara, E., Davis, C. A., Menczer, F., and Flam-
mini, A. (2017b). Online human-bot interactions: De-
tection, estimation, and characterization. Proceedings
of the 11th International Conference on Web and So-
cial Media, ICWSM 2017, (Icwsm):280–289.
Wang, B. X. and Japkowicz, N. (2010). Boosting support
vector machines for imbalanced data sets. Knowledge
and Information Systems, 25(1):1–20.
Wang, K. C., Lai, C. M., Wang, T., and Wu, S. F. (2015).
Bandwagon effect in facebook discussion groups.
ACM International Conference Proceeding Series, 07-
09-Ocobert-2015:1–6.
Wu, K., Yang, S., and Zhu, K. Q. (2015). False rumors
detection on Sina Weibo by propagation structures.
Proceedings - International Conference on Data En-
gineering, 2015-May:651–662.
Xiao, C., Freeman, D. M., and Hwa, T. (2015). Detecting
Clusters of Fake Accounts in Online Social Networks.
Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security - AISec ’15, pages 91–101.
Yamaguchi, Y., Takahashi, T., Amagasa, T., and Kitagawa,
H. (2010). TURank: Twitter user ranking based on
user-tweet graph analysis. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
6488 LNCS:240–253.
Yuan, J., Li, L., and Huang, M. (2013). Topology-based
algorithm for users’ influence on specific topics in
micro-blog. The Journal of Information and Compu-
tational Science, 10:2247–2259.
WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies
350