study. In Szyma
´
nski, J. and Velegrakis, Y., edi-
tors, Semantic Keyword-Based Search on Structured
Data Sources (IKC), volume 10546, pages 142–154.
Springer, Berlin, Heidelberg. Lecture Notes in Com-
puter Science (LNCS).
Bellahsene, Z., Bonifati, A., and Rahm, E. (2011). Schema
Matching and Mapping. Data-Centric Systems and
Applications (DCSA). Springer, Berlin, Heidelberg.
Bouquet, P., Ehrig, M., Euzenat, J., Franconi, E., Hitzler,
P., Krotzsch, M., Serafini, L., Stamu, G., Sure, Y.,
and Tessaris, S. (2005). Specification of a common
framework for characterizing alignment. Deliverable
D2.2.1, Knowledge web NoE, Wright State Univer-
sity, Ohio (USA).
Cai, L. and Zhu, Y. (2015). The challenges of data quality
and data quality assessment in the Big Data era. Data
Science Journal, 14(2):1–10.
Choi, N., Song, I.-Y., and Han, H. (2006). A survey on
ontology mapping. ACM SIGMOD Record, 35(3):34–
41.
Corcho,
´
O., G
´
omez-P
´
erez, A., Gonz
´
alez-Cabero, R., and
Su
´
arez-Figueroa, M. C. (2004). ODEval: A tool for
evaluating RDF(S), DAML+OIL, and OWL concept
taxonomies. In Bramer, M. and Devedzic, V., edi-
tors, First International Conference on Artificial Intel-
ligence Applications and Innovations (AIAI), volume
154 of IFIP International Federation for Informa-
tion Processing (IFIPAICT), pages 369–382. Springer,
Boston (USA).
Duque-Ramos, A., Fern
´
andez-Breis, J. T., Iniesta, M., Du-
montier, M., Aranguren, M. E., Schulz, S., Aussenac-
Gilles, N., and Stevens, R. (2013). Evaluation of the
OQuaRE framework for ontology quality. Expert Sys-
tems with Applications, 40(7):2696–2703.
Fern
´
andez-L
´
opez, M., G
´
omez-P
´
erez, A., and Juristo, N.
(1997). METHONTOLOGY: From ontological art to-
wards ontological engineering. In AAAI-97 Spring
Symposium Series, pages 33–40. American Asocia-
tion for Artificial Intelligence.
Gal, A. and Shvaiko, P. (2009). Advances in ontology
matching. In Dillon, T. S., Chang, E., Meersman, R.,
and Sycara, K., editors, Advances in Web Semantics I:
Ontologies, Web Services and Applied Semantic Web,
volume 4891 of Lecture Notes in Computer Science
(LNCS), pages 176–198. Springer, Berlin, Heidelberg.
G
´
omez-P
´
erez, A., Ram
´
ırez, J., and Villaz
´
on-Terrazas, B.
(2007). An ontology for modelling Human Resources
Management based on standards. In Apolloni, B.,
Howlett, R. J., and Jain, L., editors, International
Conference on Knowledge-Based and Intelligent In-
formation and Engineering Systems (KES), volume
4692, pages 534–541. Springer, Berlin, Heidelberg.
Lecture Notes in Computer Science (LNCS).
Gruber, T. R. (1993). A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199–220.
Guarino, N. and Welty, C. A. (2004). An overview of Onto-
Clean. In Staab, S. and Studer, R., editors, Handbook
on Ontologies, International Handbooks on Informa-
tion Systems (INFOSYS), pages 151–171. Springer,
Berlin, Heidelberg.
Iqbal, R., Murad, M. A. A., Mustapha, A., and Sharef,
N. M. (2013). Analysis of ontology engineering
methodologies: A literature review. Research Jour-
nal of Applied Sciences, Engineering and Technology,
6(16):2993–3000.
Mishra, S. and Jain, S. (2020). Ontologies as a semantic
model in IoT. International Journal of Computers and
Applications, 42(3):233–243.
Noy, N. F. and McGuinness, D. L. (2001). Ontology de-
velopment 101: A guide to creating your first ontol-
ogy. Technical Report KSL-01-05, Stanford Univer-
sity, California (USA).
Otero-Cerdeira, L., Rodr
´
ıguez-Mart
´
ınez, F. J., and G
´
omez-
Rodr
´
ıguez, A. (2015). Ontology matching: A lit-
erature review. Expert Systems with Applications,
42(2):949–971.
Pe
˜
na, P., Del Hoyo, R., Vea-Murgu
´
ıa, J., Rodrig
´
alvarez, V.,
Calvo, J., and Mart
´
ın, J. (2016). Moriarty: Improving
‘time to market’in big data and artificial intelligence
applications. International Journal of Design & Na-
ture and Ecodynamics, 11(3):230–238.
Rico, M., Caliusco, M. L., Chiotti, O., and Galli, M. R.
(2014). OntoQualitas: A framework for ontology
quality assessment in information interchanges be-
tween heterogeneous systems. Computers in Industry,
65(9):1291–1300.
Shvaiko, P. and Euzenat, J. (2013). Ontology match-
ing: State of the art and future challenges. IEEE
Transactions on Knowledge and Data Engineering,
25(1):158–176.
Smedt, J. D., le Vrang, M., and Papantoniou, A. (2015).
ESCO: Towards a Semantic Web for the European la-
bor market. In Second International Workshop on Se-
mantic and Dynamic Web Processes (ICWS), volume
140. CEUR Workshop Proceedings.
Taleb, I., Serhani, M. A., and Dssouli, R. (2018). Big
Data quality: A survey. In 2018 IEEE International
Congress on Big Data (BigData Congress), pages
166–173. IEEE.
Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P.,
and Aleman-Meza, B. (2005). OntoQA: Metric-
based ontology quality analysis. In IEEE Work-
shop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and
Knowledge Sources at Fifth IEEE International Con-
ference on Data Mining (ICDM), pages 45–53.
Vrande
ˇ
ci
´
c, D. (2009). Ontology evaluation. In Staab, S.
and Studer, R., editors, Handbook on Ontologies, In-
ternational Handbooks on Information Systems (IN-
FOSYS), pages 293–313. Springer, Berlin, Heidel-
berg.
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann,
J., and Auer, S. (2015). Quality assessment for Linked
Data: A survey. Semantic Web, 7(1):63–93.
Zimmermann, A., Krotzsch, M., Euzenat, J., and Hitzler, P.
(2006). Formalizing ontology alignment and its oper-
ations with category theory. In Fourth International
Conference on Formal Ontology in Information Sys-
tems (FOIS), pages 277–288. hal-00825949.
WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies
284