Binns, R. and Matthews, D. (2014). Community structure
for efficient information flow in’tos; dr’, a social ma-
chine for parsing legalese. In Proceedings of the 23rd
International Conference on World Wide Web, pages
881–884. ACM.
Braun, D., Scepankova, E., Holl, P., and Matthes, F. (2017).
Satos: Assessing and summarising terms of services
from german webshops. In Proceedings of the 10th In-
ternational Conference on Natural Language Genera-
tion, pages 223–227, Santiago de Compostela, Spain.
Association for Computational Linguistics.
Braun, D., Scepankova, E., Holl, P., and Matthes, F. (2018).
Customer-centered legaltech: Automated analysis of
standard form contracts. In Tagungsband Interna-
tionales Rechtsinformatik Symposium (IRIS) 2018,
pages 627–634. Editions Weblaw.
Braun, D., Scepankova, E., Holl, P., and Matthes, F.
(2019a). Consumer protection in the digital era: The
potential of customer-centered legaltech. In David,
K., Geihs, K., Lange, M., and Stumme, G., editors,
INFORMATIK 2019: 50 Jahre Gesellschaft f
¨
ur Infor-
matik – Informatik f
¨
ur Gesellschaft, pages 407–420,
Bonn. Gesellschaft f
¨
ur Informatik e.V.
Braun, D., Scepankova, E., Holl, P., and Matthes, F.
(2019b). The potential of customer-centered legal-
tech. Datenschutz und Datensicherheit - DuD,
43(12):760–766.
Brown, S. (2015). Peeking inside the black box: A prelim-
inary survey of technology assisted review (tar) and
predictive coding algorithms for ediscovery. Suffolk J.
Trial & App. Advoc., 21:221.
Chalkidis, I., Fergadiotis, E., Malakasiotis, P., Aletras, N.,
and Androutsopoulos, I. (2019). Extreme multi-label
legal text classification: A case study in EU legisla-
tion. In Proceedings of the Natural Legal Language
Processing Workshop 2019, pages 78–87, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.
Conrad, J. G. (2010). E-discovery revisited: the need for ar-
tificial intelligence beyond information retrieval. Ar-
tificial Intelligence and Law, 18(4):321–345.
Elnaggar, A., Gebendorfer, C., Glaser, I., and Matthes, F.
(2018). Multi-task deep learning for legal document
translation, summarization and multi-label classifica-
tion. In Proceedings of the 2018 Artificial Intelligence
and Cloud Computing Conference, pages 9–15.
Hajlaoui, N., Kolovratnik, D., V
¨
ayrynen, J., Steinberger, R.,
and Varga, D. (2014). Dcep-digital corpus of the eu-
ropean parliament. In LREC, pages 3164–3171.
Lippi, M., Palka, P., Contissa, G., Lagioia, F., Micklitz, H.-
W., Panagis, Y., Sartor, G., and Torroni, P. (2017). Au-
tomated detection of unfair clauses in online consumer
contracts. In JURIX, pages 145–154.
Lippi, M., Pałka, P., Contissa, G., Lagioia, F., Micklitz, H.-
W., Sartor, G., and Torroni, P. (2019). Claudette: an
automated detector of potentially unfair clauses in on-
line terms of service. Artificial Intelligence and Law,
27(2):117–139.
Mauritz, B. J. (2018). Automatic classification of legal doc-
uments. Master’s thesis, Masarykova univerzita.
Micklitz, H.-W., Pałka, P., and Panagis, Y. (2017). The em-
pire strikes back: digital control of unfair terms of on-
line services. Journal of consumer policy, 40(3):367–
388.
Obar, J. A. and Oeldorf-Hirsch, A. (2020). The biggest
lie on the internet: Ignoring the privacy policies
and terms of service policies of social networking
services. Information, Communication & Society,
23(1):128–147.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Soh, J., Lim, H. K., and Chai, I. E. (2019). Legal area clas-
sification: A comparative study of text classifiers on
singapore supreme court judgments. In Proceedings
of the Natural Legal Language Processing Workshop
2019, pages 67–77, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.
Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant,
N., Abrego, G. H., Yuan, S., Tar, C., Sung, Y.-H., et al.
(2019). Multilingual universal sentence encoder for
semantic retrieval. arXiv preprint arXiv:1907.04307.
Automatic Detection of Terms and Conditions in German and English Online Shops
237