From the test results in table 9. it can be seen the
contribution of success / accuracy by the Navie Bayes
method using data classification.
Table 9. Classification of data captions
NO Naïve Bayes
results
Tool Test
Results
information
1 GOOD GOOD Corresponding
2 GOOD
ENOUGH
GOOD
ENOUGH
Corresponding
3 GOOD
ENOUGH
GOOD
ENOUGH
Corresponding
4 GOOD
ENOUGH
GOOD
ENOUGH
Corresponding
5 DANGEROUS GOOD
ENOUGH
Not
Corresponding
6 GOOD GOOD Corresponding
7 GOOD
ENOUGH
GOOD
ENOUGH
Corresponding
8 DANGEROUS DANGEROUS Corresponding
9 DANGEROUS DANGEROUS Corresponding
10 DANGEROUS DANGEROUS Corresponding
Of the 10 data that are owned, which have
information that does not match one (1) data and that
has information according to as many as nine (9) data,
the level of accuracy of tool testing using this method
is very good.
9
10
100% 90%
The level of accuracy is 90% from 100%.
4 CONCLUSION
The authenticity of a Legen sample/Tuak (90-100%)
Can be known using this tool. For Legen testing/Tuak
that is not genuine gas alcohol properties in the
Legen/Tuak only large on the gas is not on the drink
is proven when the long left in the air the alcohol
content that reads very minimal is different from the
original it is compared.
The Navie Bayes method used as a sample
classification method is very well proven by
achieving a 90% success rate on tool testing. The
connected IoT system is excellent showing the work
of each sensor in realtime.
REFERENCES
Alkohol, U. J. I., & Fermentasi, P. (n.d.). Uji alkohol pada
fermentasi tuak. 148–156.
Artikel, I. (2018). Jurnal Litbang Industri. 23–30.
Ayu, I. G., Dhyanaputri, S., & Jirna, I. N. (2017). KAJIAN
KARAKTERISTIK OBJEKTIF DAN SUBJEKTIF
TUAK AREN ( Arenga pinnata ) BERDASARKAN
LAMA WAKTU PENYIMPANAN. 5(2).
Ayu, I., Pranayanti, P., & Sutrisno, A. (2015).
PEMBUATAN MINUMAN PROBIOTIK AIR
KELAPA MUDA ( Cocos nucifera L . ) DENGAN
STARTER Lactobacillus casei strain Shirota The
Making of Coconut Water ( Cocos nucifera L .)
Probiotic Drink with Starter Lactobacillus casei Shirota
strain. 3(2), 763–772.
Bhagwat, S. D., Hulloli, A. I., Patil, S. B., Khan, A. A., &
Kamble, A. S. (2018). Smart Green House using IOT
and Cloud Computing. 2330–2333.
Bhuta, P., Desai, K., & Keni, A. (2015). Alcohol Detection
and Vehicle Controlling. 2015 International Journal of
Enginering Trends and Applications (IJETA), 2(2), 92–
97.
Fatmawati, F. (2016). Perbandingan Algoritma Klasifikasi
Data Mining Model C4.5 Dan Naive Bayes Untuk
Prediksi Penyakit Diabetes. None, 13(1), 50–59.
Hidayatullah, M., Fat, J., & Andriani, T. (2018). Prototype
Sistem Telemetri Pemantauan Kualitas Air Pada Kolam
Ikan Air Tawar Berbasis Mikrokontroler. Positron,
8(2), 43. https://doi.org/10.26418/positron.v8i2.27367
Ikegami, S. (1997). Tuak dalam Masyarakat Batak Toba:
Laporan Singkat tentang Aspek Sosial-budaya
Penggunaan Nira Tuak in the Toba Batak Society: A
Preliminary Report on the Socio-cultural Aspect of
Palm Wine Consumption. (11), 1–8.
Ilmu, D., & Dalam, P. (2019). Fermentasi: Metode untuk
Meningkatkan Nilai Nutrisi Jerami Padi Fermentation:
Methods to Improve Nutrition Value of Rice Straw
Yanuartono, S. Indarjulianto, H. Purnamaningsih, A.
Nururrozi, dan S. Raharjo. 14(1), 49–60.
Lubis, R. S., & Pinem, M. (2014). Analisis Quality of
Service (Qos) Jaringan Internet Di Smk Telkom
Medan. Singuda ENSIKOM, 7(3), 131–136.
Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017).
Penerapan Algoritma Naive Bayes Untuk Memprediksi
Jumlah Produksi Barang Berdasarkan Data Persediaan
Dan Jumlah Pemesanan Pada Cv . Papadan Mama
Pastries. Effrida Manalu, Fricles Ariwisanto Sianturi,
Mamed Rofendy Manalu, 1(2), 16–21.
Moede, F. H., & Gonggo, S. T. (2017). PENGARUH
LAMA WAKTU FERMENTASI TERHADAP
KADAR BIOETANOL DARI PATI UBI JALAR
KUNING ( Ipomea batata L ) The Influence of A Long
Time Fermentation Againts bioethanol levels of Starch
Sweet Potato is Yellow ( Ipomea batatas L ). 6(May),
86–91.
Pamungkas, W., & Kompiang, M. (2006). Teknologi
fermentasi, alternatif solusi dalam upaya pemanfaatan
bahan pakan lokal. 43–48.