Table 2: Character Recognition Results
5 CONCLUSIONS
Based on the test results of the motor plate detection
of the success rate depends on the shape of the
rectangular contour found, when the plate image has
a clear contour line and not cut off, then the number
plate will be detected accurately. Also, the light
affects the image quality results captured by the
camera. The higher the light then the more noise is
detected.
The results of the character segmentation trial
success level are already quite accurate using the
connected component method. With an accurate rate
of about 80- 90% in separating part of the character
part on the number plate.
For the results of the character recognition trials
with the method K-Nearest neighbour level of
accuracy in 80 characters is 84.5%. Character
recognition using the K- Nearest neighbour method in
a proven application can be applied. Although overall
the success rate of 10 samples of motors taken with
changing light conditions with the assumption of
errors that can be tolerated as much as one character.
REFERENCES
Babu, K. M., Raghunadh, M. V., 2016. Vehicle number
plate detection and recognition using bounding box
method. In International Conference on Advanced
Communication Control and Computing Technologies
(ICACCCT), Ramanathapuram, pp. 106-110. IEEE.
Budianto, A., Adji T. B., Hartanto, R., 2015. Deteksi
Nomor Kendaraan Dengan Metode Connected
Component Dan SVM. Journal TIM Darmajaya.
Kusumanto, A. N. T. R. D., 2011. Pengolahan Citra Digital
Untuk Mendeteksi Obyek Menggunakan Pengolahan
Warna Model Normalisasi Rgb. In Seminar Nasional
Teknologi Informasi & Komunikasi Terapan..
Nur Taufiq, A. H. R. I. M 2012. Sistem Pengenalan Plat
Nomor Polisi Kendaraan Bermotor Dengan
Menggunakan Metode Jaringan Saraf Tiruan
Perambatan Balik, Universitas Diponegoro: Electro
UNDIP.
Qadri, M. T., Asif, M., 2009. Automatic Number Plate
Recognition System for Vehicle Identification Using
Optical Character Recognition. In International
Conference on Education Technology and Computer,
Singapore, 2009, pp. 335-338, IEEE.
Ruslianto, A. H. I., 2011. Pengenalan Karakter Plat Nomor
Mobil Secara. Indonesian Journal of Electronics and
Instrumentation Sytems.
Santra, S., Roy, S., Sardar, P., Deyasi, A., 2019. Real-Time
Vehicle Detection from Captured Images. In
International Conference on Opto-Electronics and
Applied Optics (Optronix), Kolkata, India, 2019, pp. 1-
4. IEEE.
Sari, S. N. D., Fadlil, A., 2014. Sistem Identifikasi Citra
Jahe Menggunakan Jarak CzekanowskI. Jurnal Sarjana
Teknik Informatika..
Setiawan, C. P. H. M., 2015. Pengenalan Plat Nomor
Kendaraan Menggunakan Neural Network. Tugas
Akhir, Politeknik Negeri Batam.
Tauchid, N. A., Rumani, R., Irawan, B., 2015. Analisis
Performansi Metode KNN (K-Nearest Neighbor)
Untuk Pengenalan Karakter Pada Plat Nomor
Kendaraan Di Raspberry Pi. Jurnal e- Proceeding of
Engineering.
Triyandil, J. A. D., 2014. Sistem Otomatisasi Gerbang
Dengan Pengolahan Citra Membaca Nomor Plat
Kendaraan, Skripsi Universitas Komputer Indonesia.,
Bandung, jawa barat, Universitas Komputer Indonesia.