agrumicoles par télédétection dans la plaine de triffa-
berkane (maroc). African Journal on Land Policy and
Geospatial Sciences, 1(3):164–177.
El Mansouri, L., Lahssini, S., Hadria, R., Eddaif, N., Ben-
abdelouahab, T., and Dakir, A. (2019). Time series
multispectral images processing for crops and forest
mapping: two moroccan cases. In Geospatial Tech-
nologies for Effective Land Governance, pages 83–
106. IGI Global.
Elmasry, G., Kamruzzaman, M., Sun, D.-W., and Allen, P.
(2012). Principles and applications of hyperspectral
imaging in quality evaluation of agro-food products: a
review. Critical reviews in food science and nutrition,
52(11):999–1023.
Elnagar, A., Al-Debsi, R., and Einea, O. (2020). Arabic text
classification using deep learning models. Information
Processing & Management, 57(1):102121.
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
(2016). Deep learning, volume 1. MIT press Cam-
bridge.
He, X. and Chen, Y. (2019). Optimized input for cnn-based
hyperspectral image classification using spatial trans-
former network. IEEE Geoscience and Remote Sens-
ing Letters, 16(12):1884–1888.
Jeon, W. and Kim, Y. (2018). An assessment of a ran-
dom forest classifier for a crop classification using air-
borne hyperspectral imagery. 대원사지,
34(1):141–150.
Kang, X., Zhuo, B., and Duan, P. (2019). Semi-supervised
deep learning for hyperspectral image classification.
Remote Sensing Letters, 10(4):353–362.
Khan, M. J., Khan, H. S., Yousaf, A., Khurshid, K., and Ab-
bas, A. (2018). Modern trends in hyperspectral image
analysis: a review. IEEE Access, 6:14118–14129.
Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A.
(2017). Deep learning classification of land cover and
crop types using remote sensing data. IEEE Geo-
science and Remote Sensing Letters, 14(5):778–782.
Lira Melo de Oliveira Santos, C., Augusto Camargo Lam-
parelli, R., Kelly Dantas Araújo Figueiredo, G.,
Dupuy, S., Boury, J., Luciano, A. C. d. S., Torres,
R. d. S., and Le Maire, G. (2019). Classification of
crops, pastures, and tree plantations along the season
with multi-sensor image time series in a subtropical
agricultural region. Remote Sensing, 11(3):334.
Liu, Y., Zhou, S., Han, W., Liu, W., Qiu, Z., and Li, C.
(2019). Convolutional neural network for hyperspec-
tral data analysis and effective wavelengths selection.
Analytica Chimica Acta, 1086:46–54.
Lu, D., Weng, Q., Moran, E., Li, G., and Hetrick, S.
(2011). Remote sensing image classification. CRC
Press/Taylor and Francis: Boca Raton, FL, USA.
Makantasis, K., Karantzalos, K., Doulamis, A., and
Doulamis, N. (2015). Deep supervised learning
for hyperspectral data classification through convo-
lutional neural networks. In 2015 IEEE Interna-
tional Geoscience and Remote Sensing Symposium
(IGARSS), pages 4959–4962. IEEE.
Maxwell, A. E., Warner, T. A., and Fang, F. (2018). Im-
plementation of machine-learning classification in re-
mote sensing: An applied review. International Jour-
nal of Remote Sensing, 39(9):2784–2817.
Maxwell, A. E., Warner, T. A., and Strager, M. P. (2016).
Predicting palustrine wetland probability using ran-
dom forest machine learning and digital elevation
data-derived terrain variables. Photogrammetric En-
gineering & Remote Sensing, 82(6):437–447.
Mountrakis, G., Im, J., and Ogole, C. (2011). Support
vector machines in remote sensing: A review. IS-
PRS Journal of Photogrammetry and Remote Sensing,
66(3):247–259.
Orynbaikyzy, A., Gessner, U., and Conrad, C. (2019). Crop
type classification using a combination of optical and
radar remote sensing data: a review. international
journal of remote sensing, 40(17):6553–6595.
Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava,
P. K., and Ben Dor, E. (2019). Land use/land cover in
view of earth observation: data sources, input dimen-
sions, and classifiers—a review of the state of the art.
Geocarto International, pages 1–32.
Paoletti, M., Haut, J., Plaza, J., and Plaza, A. (2019). Deep
learning classifiers for hyperspectral imaging: A re-
view. ISPRS Journal of Photogrammetry and Remote
Sensing, 158:279–317.
Quinn, J. A., Nyhan, M. M., Navarro, C., Coluccia, D.,
Bromley, L., and Luengo-Oroz, M. (2018). Human-
itarian applications of machine learning with remote-
sensing data: review and case study in refugee set-
tlement mapping. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 376(2128):20170363.
Ragettli, S., Herberz, T., and Siegfried, T. (2018). An un-
supervised classification algorithm for multi-temporal
irrigated area mapping in central asia. Remote Sens-
ing, 10(11):1823.
Ratnakumar, R. and Nanda, S. J. (2019). A low complexity
hardware architecture of k-means algorithm for real-
time satellite image segmentation. Multimedia Tools
and Applications, 78(9):11949–11981.
Reshma, S. and Veni, S. (2017). Comparative analysis
of classification techniques for crop classification us-
ing airborne hyperspectral data. In 2017 Interna-
tional Conference on Wireless Communications, Sig-
nal Processing and Networking (WiSPNET), pages
2272–2276. IEEE.
Sahoo, R. N., Ray, S., and Manjunath, K. (2015). Hyper-
spectral remote sensing of agriculture. Current Sci-
ence, pages 848–859.
Salehi, B., Daneshfar, B., and Davidson, A. M. (2017). Ac-
curate crop-type classification using multi-temporal
optical and multi-polarization sar data in an object-
based image analysis framework. International Jour-
nal of Remote Sensing, 38(14):4130–4155.
Siachalou, S., Mallinis, G., and Tsakiri-Strati, M. (2017).
Analysis of time-series spectral index data to enhance
crop identification over a mediterranean rural land-
scape. IEEE Geoscience and Remote Sensing Letters,
14(9):1508–1512.
Signoroni, A., Savardi, M., Baronio, A., and Benini, S.
(2019). Deep learning meets hyperspectral image