Arvaniti, E. C., Juenger, M. C. G., Bernal, S. A., Duchesne,
J., Courard, L., Leroy, S., Provis, J. L., Klemm, A., De
Belie, N., 2015b. Determination of particle size,
surface area, and shape of supplementary cementitious
materials by different techniques, Materials and
Structures, 48(11):3687โ3701.
Bagheri, G. H., Bonadonna, C., Manzella, I., Vonlanthen,
P., 2015. On the characterization of size and shape of
irregular particles, Powder Technology, 270:141โ153.
Bouglada, M. S., Naceri, A., Baheddi, M., Pereira-de-
Oliveira, L., 2019. Characterization and modelling of
the rheological behaviour of blended cements based on
mineral additions, European Journal of Environmental
and Civil Engineering, pp. 1-18.
Bouyahyaoui, A., Cherradi, T., Abidi, M. L., Tchamdjou,
W. H. J., 2018. Characterization of particle shape and
surface properties of powders from volcanic scoria,
Journal of Materials and Environmental Science,
9(7):2032-2041.
Califice, A., Michel, F., Dislaire, G., Pirard, E., 2013.
Influence of particle shape on size distribution
measurements by 3D and 2D image analyses and laser
diffraction, Powder Technology, 237:67โ75.
Dioguardi, F., Mele, D., Dellino, P., 2018. A new one-
equation model of fluid drag for irregularly shaped
particles valid over a wide range of Reynolds number,
J. of Geophysical Res.:Solid Earth, 123:144โ156.
EN 196-6., 2010. Methods of testing cement - Part 6:
Determination of fineness, European Standard.
Felekoglu, B., 2009. A new approach to the
characterisation of particle shape and surface
properties of powders employed in concrete industry,
Construction and Building Materials, 23:1154โ1162.
Ferraris, C. F., Hackley, V. A., Aviles, A. I., Buchanan, C.
E., 2002. Analysis of the ASTM round-Robin test on
particle size distribution of Portland cement: Phase I,
Report no. 6883. Maryland: National Institute of
Standards and Technology (NISTIR).
Gregoire, M. P., Dislaire, G., Pirard, E., 2007. Accuracy of
size distributions obtained from single particle static
digital image analysis, Proceeding. PARTEC
Conference. Nรผrenberg, 4p.
Hackley, V. A., Lum, L-S., Gintautas V., Ferraris, C. F.,
2004. Particle size analysis by laser diffraction
spectrometry: application to cementitious powders,
Report no. 7097. Maryland: National Institute of
Standards and Technology (NISTIR).
Ilic, M., Budak, I., Vucinic, M., Nagode, A., Kozmidis-
Luburic, U., Hodolic, J., Puskar, T., 2015. Size and
shape particle analysis by applying image analysis and
laser diffraction-inhalable dust in a dental laboratory,
Measurement, 66:109โ117.
Jin, R., Chen, Q., Soboyejo, A. B. O., 2018. Non-linear and
mixed regression models in predicting sustainable
concrete strength, Construction and Building Materials,
170:142โ152.
Juimo, W. H. T., Grigoletto, S., Michel, F., Courard, L.,
Cherradi, T., Abidi., M. L., 2017. Effects of various
amounts of natural pozzolans from volcanic scoria on
performance of Portland cement mortars, International
Journal of Engineering Research in Africa, 32:36-52.
Juimo, W., Cherradi, T., Abidi, L., Oliveira, L., 2016.
Characterisation of natural pozzolan of "Djoungo"
(Cameroon) as lightweight aggregate for lightweight
concrete, GEOMATE, 11(27):2782-2789.
Klemm, A. J., Wiggins, D. E., 2017. Particle size
characterisation of SCMs by mercury intrusion
porosimetry, Fizyka Budowli W Teorii I Praktyce Tom
IX, Nr 1-2017, pp 5-12.
Liu, E. J., Cashman, K. V., Rust., A. C., 2015. Optimising
shape analysis to quantify volcanic ash morphology,
GeoResJ, 8:14โ30.
Michel, F., Courard, L., 2014. Particle size distribution of
limestone fillers: granulometry and specific surface
area investigations, Particulate Science and
Technology, 32:334-340.
Mikli, V., Kรคerdi, H., Kulu, P., Besterci, M., 2001.
Characterization of powder particle morphology,
Proceedings of the Estonian Academy of Sciences,
Engineering 7(1):22โ34.
Neves, R., Silva, A., De Brito, J., Silva, R.V., 2018.
Statistical modelling of the resistance to chloride
penetration in concrete with recycled aggregates,
Construction and Building Materials, 182 : 550โ560.
Niesel, K., 1973. Determination of the specific surface by
measurement of permeability, Materials and Structures,
6(3):227-231.
Orhan, M., รzer, M., Iลฤฑk, N., 2004. Investigation of laser
diffraction and sedimentation methods which are used
for determination of grain size distribution of fine
grained soils, G.U. Journal of Science, 17(2):105โ113.
Pavloviฤ, M. G., Pavloviฤ, L. J., Maksimoviฤ, V. M.,
Nikoliฤ, N. D., Popov, K. I., 2010. Characterization
and morphology of copper powder particles as a
function of different electrolytic regimes, International
Journal of Electrochemical Science, 5:1862โ187.
Slinker, B. K., Glantz, S.A., 2008. Multiple linear
regression: accounting for multiple simultaneous
determinants of a continuous dependent variable,
Circulation, 117(13):1732โ1737.
Tchamdjou, W. H. J., Abidi, M. L., Cherradi, T., De
Oliveira, L. A. P., 2017a. Effect of the color of natural
pozzolan from volcanic scoria on the rheological
properties of Portland cement pastes, Energy Procedia,
139:703โ709. DOI: 10.1016/j.egypro.2017.11.275.
Tchamdjou, W. H. J., Cherradi, T., Abidi, M. L., De
Oliveira, L. A. P., 2017b. Influence of different amounts
of natural pozzolan from volcanic scoria on the
rheological properties of Portland cement pastes,
Energy Procedia, 139:696โ702. DOI:
10.1016/j.egypro.2017.11.274.
Varga, G., Kovรกcs, J., Szalai, Z., Cserhรกti, C., รjvรกri, G.,
2018. Granulometric characterization of paleosols in
loess series by automated static image analysis,
Sedimentary Geology, 370, pp 1-14.