Koirala, A., Walsh, K. B., Wang, Z., and McCarthy, C.
(2019). Deep learning–method overview and review
of use for fruit detection and yield estimation. Com-
puters and Electronics in Agriculture, 162:219–234.
LLC, M. connectedpapers.com.
Meli, S., Porto, M., Belligno, A., Bufo, S. A., Mazzatura,
A., and Scopa, A. (2002). Influence of irrigation with
lagooned urban wastewater on chemical and micro-
biological soil parameters in a citrus orchard under
mediterranean condition. Science of the total environ-
ment, 285(1-3):69–77.
Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney,
A., and Ramon, H. (2004). Automatic detection of
‘yellow rust’in wheat using reflectance measurements
and neural networks. Computers and electronics in
agriculture, 44(3):173–188.
Nelson, T., Boots, B., and Wulder, M. A. (2005). Tech-
niques for accuracy assessment of tree locations ex-
tracted from remotely sensed imagery. Journal of en-
vironmental management, 74(3):265–271.
Obreza, T. T. and Morgan, K. T. (2008). Nutrition of florida
citrus trees. EDIS, 2008(2).
Ok, A. O. and Ozdarici-Ok, A. (2018). 2-d delineation
of individual citrus trees from uav-based dense pho-
togrammetric surface models. International Journal
of Digital Earth, 11(6):583–608.
Penuelas, J., Baret, F., and Filella, I. (1995). Semi-empirical
indices to assess carotenoids/chlorophyll a ratio from
leaf spectral reflectance. Photosynthetica, 31(2):221–
230.
Pons, E., Peris, J. E., and Pe
˜
na, L. (2012). Field perfor-
mance of transgenic citrus trees: Assessment of the
long-term expression of uida and nptiitransgenes and
its impact on relevant agronomic and phenotypic char-
acteristics. BMC biotechnology, 12(1):41.
Purcell, D. E., O’Shea, M. G., Johnson, R. A., and Kokot, S.
(2009). Near-infrared spectroscopy for the prediction
of disease ratings for fiji leaf gall in sugarcane clones.
Applied Spectroscopy, 63(4):450–457.
Qin, J., Burks, T. F., Ritenour, M. A., and Bonn, W. G.
(2009). Detection of citrus canker using hyperspectral
reflectance imaging with spectral information diver-
gence. Journal of food engineering, 93(2):183–191.
Robson, A., Petty, J., Joyce, D., Marques, J., and Hofman,
P. (2014). High resolution remote sensing, gis and
google earth for avocado fruit quality mapping and
tree number auditing. In XXIX International Horti-
cultural Congress on Horticulture: Sustaining Lives,
Livelihoods and Landscapes (IHC2014): 1130, pages
589–596.
Robson, A., Rahman, M. M., and Muir, J. (2017). Using
worldview satellite imagery to map yield in avocado
(persea americana): a case study in bundaberg, aus-
tralia. Remote Sensing, 9(12):1223.
Rouse Jr, J. (1974). Monitoring the vernal advancement
and retrogradation (green wave effect) of natural veg-
etation.
Rouse Jr, J., Haas, R., Schell, J., and Deering, D. (1974).
Paper a 20. In Third Earth Resources Technology
Satellite-1 Symposium: The Proceedings of a Sympo-
sium Held by Goddard Space Flight Center at Wash-
ington, DC on December 10-14, 1973: Prepared at
Goddard Space Flight Center, volume 351, page 309.
Scientific and Technical Information Office, National
Aeronautics and Space . . . .
Santoro, F., Tarantino, E., Figorito, B., Gualano, S., and
D’Onghia, A. M. (2013). A tree counting algorithm
for precision agriculture tasks. International Journal
of Digital Earth, 6(1):94–102.
Sevick-Muraca, E. M. and Paithankar, D. Y. (1999). Flu-
orescence imaging system and method. US Patent
5,865,754.
Shafri, H. Z. and Hamdan, N. (2009). Hyperspectral im-
agery for mapping disease infection in oil palm planta-
tionusing vegetation indices and red edge techniques.
American Journal of Applied Sciences, 6(6):1031.
Spinelli, F., Noferini, M., and Costa, G. (2004). Near in-
frared spectroscopy (nirs): perspective of fire blight
detection in asymptomatic plant material. In X Inter-
national Workshop on Fire Blight 704, pages 87–90.
Wang, L., Gong, P., and Biging, G. S. (2004). Individual
tree-crown delineation and treetop detection in high-
spatial-resolution aerial imagery. Photogrammetric
Engineering & Remote Sensing, 70(3):351–357.
Wold, S., Esbensen, K., and Geladi, P. (1987). Principal
component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3):37–52.
Yang, C.-M., Cheng, C.-H., and Chen, R.-K. (2007).
Changes in spectral characteristics of rice canopy in-
fested with brown planthopper and leaffolder. Crop
science, 47(1):329–335.
Zarco-Tejada, P. J., Gonz
´
alez-Dugo, V., and Berni, J. A.
(2012). Fluorescence, temperature and narrow-band
indices acquired from a uav platform for water stress
detection using a micro-hyperspectral imager and a
thermal camera. Remote sensing of environment,
117:322–337.
Zarco-Tejada, P. J., Gonz
´
alez-Dugo, V., Williams, L.,
Su
´
arez, L., Berni, J. A., Goldhamer, D., and Fer-
eres, E. (2013). A pri-based water stress index com-
bining structural and chlorophyll effects: Assessment
using diurnal narrow-band airborne imagery and the
cwsi thermal index. Remote sensing of environment,
138:38–50.
Zhang, L., Zhang, H., Niu, Y., and Han, W. (2019). Map-
ping maize water stress based on uav multispectral re-
mote sensing. Remote Sensing, 11(6):605.
Zhao, T., Yang, Y., Niu, H., Wang, D., and Chen, Y. (2018).
Comparing u-net convolutional network with mask r-
cnn in the performances of pomegranate tree canopy
segmentation. In Multispectral, Hyperspectral, and
Ultraspectral Remote Sensing Technology, Techniques
and Applications VII, volume 10780, page 107801J.
International Society for Optics and Photonics.
Zortea, M., Macedo, M. M., Mattos, A. B., Ruga, B. C., and
Gemignani, B. H. (2018). Automatic citrus tree de-
tection from uav images based on convolutional neu-
ral networks. In 2018 31th SIBGRAPI Conference
on Graphics, Patterns and Images (SIBGRAPI), vol-
ume 11.
Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object
detection in 20 years: A survey. arXiv preprint
arXiv:1905.05055.