ified weights for each of the two metrics in order
to achieve a compromise between them. Our solu-
tion has been validated by comparing the results ob-
tained with an accurate solution based on an exhaus-
tive search method.
REFERENCES
Al-Qamash, A., Soliman, I., Abulibdeh, R., and Saleh, M.
(2018). Cloud, fog, and edge computing: A software
engineering perspectivee. In 2018 International Con-
ference on Computer and Applications (ICCA), pages
276–284. IEEE.
Bilal, Kashif & Khalid, O. . E. A. . K. S. U. (2018). Poten-
tials, trends, and prospects in edge technologies: Fog,
cloudlet, mobile edge, and micro data centers. Com-
puter Networks, 130:94–120.
Chen, L., Wu, J., Long, X., and Zhang, Z. (2017). En-
gine: Cost effective offloading in mobile edge com-
puting with fog-cloud cooperation. arXiv preprint
arXiv:1711.01683.
Chen, X. (2014). Decentralized computation offloading
game for mobile cloud computing. IEEE Transactions
on Parallel and Distributed Systems, 26(4):974–983.
Chen, X., Jiao, L., Li, W., and Fu, X. (2015). Effi-
cient multi-user computation offloading for mobile-
edge cloud computing. IEEE/ACM Transactions on
Networking, 24(5):2795–2808.
Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A.
(2011). Clonecloud: elastic execution between mobile
device and cloud. In Proceedings of the sixth confer-
ence on Computer systems, pages 301–314.
Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A
survey of mobile cloud computing: architecture, ap-
plications, and approaches. Wireless communications
and mobile computing, 13(18):1587–1611.
El Ghmary, M., Chanyour, T., Hmimz, Y., and Malki,
M. O. C. (2020). Processing time and computing
resources optimization in a mobile edge computing
node. In Embedded Systems and Artificial Intelli-
gence, pages 99–108. Springer.
Fan, Z., Shen, H., Wu, Y., and Li, Y. (2013). Simulated-
annealing load balancing for resource allocation in
cloud environments. In 2013 International Confer-
ence on Parallel and Distributed Computing, Appli-
cations and Technologies, pages 1–6. IEEE.
Hassan, N., Yau, K.-L. A., and Wu, C. (2019). Edge com-
puting in 5g: A review. IEEE Access, 7:127276–
127289.
Hmimz, Y., Chanyour, T., El Ghmary, M., and
Cherkaoui Malki, M. O. (2019). Energy efficient
and devices priority aware computation offloading to
a mobile edge computing server. In 2019 5th Interna-
tional Conference on Optimization and Applications
(ICOA), pages 1–6. IEEE.
Huang, L., Feng, X., Zhang, L., Qian, L., and Wu, Y.
(2019). Multi-server multi-user multi-task computa-
tion offloading for mobile edge computing networks.
Sensors, 19(6):1446.
Li, H. (2018). Multi-task offloading and resource allocation
for energy-efficiency in mobile edge computing. Int.
J. Comput. Tech, 5:5–13.
Lyu, X., Tian, H., Sengul, C., and Zhang, P. (2016). Mul-
tiuser joint task offloading and resource optimization
in proximate clouds. IEEE Transactions on Vehicular
Technology, 66(4):3435–3447.
Rahati-Quchani, M., Abrishami, S., and Feizi, M. (2019).
An efficient mechanism for computation offload-
ing in mobile-edge computing. arXiv preprint
arXiv:1909.06849.
Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., and
Giust, F. (2016). Mobile-edge computing architecture:
The role of mec in the internet of things. IEEE Con-
sumer Electronics MagazinEE, 5(4):84–91.
Xu, J., Hao, Z., and Sun, X. (2019). Optimal offloading de-
cision strategies and their influence analysis of mobile
edge computing. Sensors, 19(14):3231.
You, C., Huang, K., Chae, H., and Kim, B.-H. (2016).
Energy-efficient resource allocation for mobile-edge
computation offloading. IEEE Transactions on Wire-
less Communications, 16(3):1397–1411.
Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X.,
Pan, L., Maharjan, S., and Zhang, Y. (2016). Energy-
efficient offloading for mobile edge computing in 5g
heterogeneous networks. IEEE access, 4:5896–5907.