ACKNOWLEDGEMENTS
This paper was written within the scope of a COVID-
19 project supported by the supervisory ministry
MENFPESRS and the CNRST of Morocco with the
aim of prevention and forecast the spread of the
COVID-19 pandemic.
REFERENCES
Abiodunab, O. I., Jantana, A., Omolarac, A. E., Dadad, K.
V., Mohamede, N. A., & Arshad, H. (2018). State-of-
the-art in artificial neural network applications: A
survey. Heliyon, 4(11), No e00938.
Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe,
B., & Cheng, X. (2020). AI and Machine Learning for
Understanding Biological Processes. Physiological
Genomics, 52(4), 200-202.
Amo-Boateng, M. (2020). Tracking and Classifying Global
COVID-19 Cases by using 1D Deep Convolution
Neural Network. medRxiv, No 2020.06.09.20126565.
Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19:
automatic detection from X-ray images utilizing
transfer learning with convolutional neural networks.
Physical and Engineering Sciences in Medicine, 43,
635–640.
Azarafza, M., Azarafza, M., & Tanha, J. (2020). COVID-
19 Infection Forecasting based on Deep Learning in
Iran. medRxiv.
doi:https://doi.org/10.1101/2020.05.16.20104182
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical
Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. arXiv, No
arXiv:1803.01271 .
Barman, A. (2020). Time Series Analysis and Forecasting
of COVID-19 Cases Using LSTM and ARIMA
Models. arXiv, No 2006.13852.
Binieli, M. (2018, 10 16). Machine learning: an
introduction to mean squared error and regression
lines. Retrieved 08 02, 2020, from
https://www.freecodecamp.org/news/machine-
learning-mean-squared-error-regression-line-
c7dde9a26b93/
Bouhamed, H. (2020). Covid-19 Cases and Recovery
Previsions with Deep Learning Nested Sequence
Prediction Models with Long Short-Term Memory
(LSTM) Architecture. International Journal of
Scientific Research in Computer Science and
Engineering, 8(2), 10-15.
Bratsas, C., Koupidis, K., Grau, J. M., Giannakopoulos, K.,
Kaloudis, A., & Aifadopoulou, G. (2020). A
Comparison of Machine Learning Methods for the
Prediction of Traffic Speed in Urban Places.
Sustainability , 12(1), No 142.
Chai, T., & Draxler, R. R. (2014). Root mean square error
(RMSE) or mean absolute error (MAE)? – Arguments
against avoiding RMSE in the literature. Geoscientific
Model Development, 7(3), 1247-1250.
Chimmula, V. K., & Zhang, L. (2020). Time series
forecasting of COVID-19 transmission in Canada using
LSTM networks. Chaos Solitons Fractals, 135, No
109864.
Dutta, S., Bandyopadhyay, S., & Kim, T.-H. (2020). CNN-
LSTM Model for Verifying Predictions of Covid-19
Cases. Asian Journal of Computer Science and
Information Technology, 5(4), 25-32.
Frank, R. J., Davey, N., & Hunt, S. P. (2001). Time Series
Prediction and Neural Networks. Journal of Intelligent
and Robotic Systems, 31, 91–103.
Ganatra, N., & Patel, A. (2018). A Comprehensive Study of
Deep Learning Architectures, Applications and Tools.
INTERNATIONAL JOURNAL OF COMPUTER
SCIENCES AND ENGINEERING, 6(12), 701-705.
Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.,
Zhang, H., Ji, W., . . . Siegel, E. (2020). Rapid AI
Development Cycle for the Coronavirus (COVID-19)
Pandemic: Initial Results for Automated Detection &
Patient Monitoring using Deep Learning CT Image
Analysis. arXiv, No arXiv2003.05037.
Hansen, C. (2019, 10 16). Optimizers Explained - Adam,
Momentum and Stochastic Gradient Descent. Retrieved
08 25, 2020, from
https://mlfromscratch.com/optimizers-explained/#/
Hidaka, A., & Kurita, T. (2017). Consecutive
Dimensionality Reduction by Canonical Correlation
Analysis for Visualization of Convolutional Neural
Networks. Proceedings of the ISCIE International
Symposium on Stochastic Systems Theory and its
Applications, 160-167.
Huang, C.-J., Chen, Y.-H., Ma, Y., & Kuo, P.-H. (2020).
Multiple-Input Deep Convolutional Neural Network
Model for COVID-19 Forecasting in China. medRxiv,
https://doi.org/10.1101/2020.03.23.20041608.
Islam, M. Z., & Asraf, A. (2020). A combined deep CNN-
LSTM network for the detection of novel coronavirus
(COVID-19) using X-ray images. Informatics in
Medicine Unlocked, 20, No 100412.
Kamal, I. M., Bae, H., Sunghyun, S., & Yun, H. (2020).
DERN: Deep Ensemble Learning Model for Short- and
Long-Term Prediction of Baltic Dry Index. Applied
Sciences, 10(4), No 1504.
Kathuria, C. (2019, 12 5). Regression — Why Mean Square
Error? Retrieved 08 02, 2020, from
https://towardsdatascience.com/https-medium-com-
chayankathuria-regression-why-mean-square-error-
a8cad2a1c96f
Lim, B., & Zohren, S. (20). Time Series Forecasting With
Deep Learning: A Survey. arXiv, No
arXiv:2004.13408.
Metsky, H., Freije, C., Kosoko-Thoroddsen, T.-S. S., &
Myhrvold, C. (2020). CRISPR-based COVID-19
surveillance using a genomically-comprehensive
machine learning approach. bioRxiv, No
bioRxiv2020.02.26.967026.
Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Soufie,
G. J. (2020). Deep-COVID: Predicting COVID-19