Conference Series: Materials Science and Engineering,
107, 12056. DOI: 10.1088/1757-899x/107/1/012056.
Asnani, A., Luviriani, E., & Oedjijono. (2020). Activity of
actinomycetes isolated from mangrove Segara Anakan
Cilacap toward Methicillin-Resistant Staphylococcus
aureus (MRSA). Jurnal Kimia Sains Dan Aplikasi,
23(1), 1–7. DOI: 10.14710/jksa.23.1.1-7.
Balasubramanian, S., Othman, E. M., Kampik, D., Stopper,
H., Hentschel, U., Ziebuhr, W., Oelschlaeger, T. A., &
Abdelmohsen, U. R. (2017). Marine sponge-derived
Streptomyces sp. SBT343 extract inhibits
Staphylococcal biofilm formation. Frontiers in
Microbiology, 8, 236. DOI:
10.3389/fmicb.2017.00236.
Belbase, A., Pant, N. D., Nepal, K., Neupane, B., Baidhya,
R., Baidya, R., & Lekhak, B. (2017). Antibiotic
resistance and biofilm production among the strains of
Staphylococcus aureus isolated from pus/wound swab
samples in a tertiary care hospital in Nepal. Annals of
Clinical Microbiology and Antimicrobials, 16(1), 15-
19. DOI: 10.1186/s12941-017-0194-0.
Bhakyashree, K., & Krishnan, K. (2018). Actinomycetes
mediated targeting of drug-resistant MRSA pathogens.
Journal of King Saud University - Science, 32(1), 260-
264. DOI: 10.1016/j.jksus.2018.04.034.
Bister, B., Bischoff, D., Ströbele, M., Riedlinger, J., Reicke,
A., Wolter, F., Bull, A. T., Zähner, H., Fiedler, H.-P., &
Süssmuth, R. D. (2004). Abyssomicin C-A polycyclic
antibiotic from a marine Verrucosispora strain as an
inhibitor of the p-aminobenzoic acid/tetrahydrofolate
biosynthesis pathway. Angewandte Chemie, 43(19),
2574–2576. DOI: 10.1002/anie.200353160.
Bjarnsholt, T., Alhede, M., Alhede, M., Eickhardt-
Sørensen, S. R., Moser, C., Kühl, M., Jensen, P. Ø., &
Høiby, N. (2013). The in vivo biofilm. Trends in
Microbiology, 21(9), 466–474. DOI:
10.1016/j.tim.2013.06.002.
Boucher, H. W., & Corey, G. R. (2008). Epidemiology of
methicillin-resistant Staphylococcus aureus. Clinical
Infectious Diseases, 46(5), 344–349. DOI:
10.1086/533590.
CLSI. (2019). Performance standards for antimicrobial
susceptibility testing, 29th Edition. CLSI supplement
M100. CLSI: Wayne, PA.
Deshpande, J., & Joshi, M. (2011). Antimicrobial
resistance: The global public health challenge.
International Journal of Students Research, 1(2), 41-
44. DOI: 10.5549/IJSR.1.2.41-44.
Dhananjeyan, V., Selvan, N., & Dhanapal, K. (2012).
Isolation, characterization, screening and antibiotic
sensitivity of actinomycetes from locally (near MCAS)
collected soil samples. Journal of Biological Sciences,
10(6), 514–519.
Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu,
O. (2010). Antibiotic resistance of bacterial biofilms.
International Journal of Antimicrobial Agents, 35(4),
322–332. DOI: 10.1016/j.ijantimicag.2009.12.011.
Konai, M. M., & Haldar, J. (2017). Fatty acid comprising
lysine conjugates: anti-MRSA agents that display in
vivo efficacy by disrupting biofilms with no resistance
development. Bioconjugate Chemistry, 28(4), 1194–
1204. DOI: 10.1021/acs.bioconjchem.7b00055.
Lee, J.-H., Park, J.-H., Cho, H. S., Joo, S. W., Cho, M. H.,
& Lee, J. (2013). Anti-biofilm activities of quercetin
and tannic acid against Staphylococcus aureus.
Biofouling, 29(5), 491–499. DOI:
10.1080/08927014.2013. 788692.
León, Q. J., Aponte-Ubillus, J., Rojas, R., Cuadra, D.,
Ayala, N., Tomás, G., & Guerrero, M. (2011). Study of
marine actinomycetes isolated from the central coast of
Peru and their antibacterial activity against methicillin-
resistant Staphylococcus aureus and vancomycin-
resistant Enterococcus faecalis. Revista Peruana de
Medicina Experimental y Salud Publica, 28(2), 237–
283. DOI: 10.1590/S1726-46342011000200010.
Memariani, H., Memariani, M., & Ghasemian, A. (2019).
An overview on anti-biofilm properties of quercetin
against bacterial pathogens. World Journal of
Microbiology and Biotechnology, 35(143). DOI:
10.1007/s11274-019-2719-5.
O'Toole, G. A. (2011). Microtiter dish biofilm formation
assay. Journal of Visualized Experiments, (47). DOI:
10.3791/2437.
Oja, T., Galindo, P. S. M., Taguchi, T., Manner, S.,
Vuorela, P. M., Ichinose, K., Metsä-Ketelä, M., &
Fallarero, A. (2015). Effective antibiofilm polyketides
against Staphylococcus aureus from the
pyranonaphthoquinone biosynthetic pathways of
Streptomyces species. Antimicrobial Agents and
Chemotherapy, 59(10), 6046-6052. DOI:
10.1128/AAC. 00991-15.
Peeters, E., Nelis, H., & Coenye, T. (2008). Resistance of
planktonic and biofilm-grown Burkholderia cepacia
complex isolates to the transition metal gallium. The
Journal of Antimicrobial Chemotherapy, 61(5), 1062–
1065. DOI: 10.1093/jac/dkn072.
Pratiwi, S. U. T., Lagendijk, E., Weert, S., Idroes, R.,
Hertiani, T., & Hondel, C. (2015). Effect of
Cinnamomum burmannii Nees ex Bl. and Massoia
aromatica Becc. essential oils on planktonic growth
and biofilm formation of Pseudomonas aeruginosa and
Staphylococcus aureus in vitro. International Journal
of Applied Research in Natural Products, 8(2), 1–13.
Rajan, B. M., & Kannabiran, K. (2014). Extraction and
identification of antibacterial secondary metabolites
from marine Streptomyces sp. VITBRK2. International
Journal of Molecular and Cellular Medicine, 3(3), 130-
137.
Sandasi, M., Leonard, C. M., & Viljoen, A. M. (2010). The
in vitro antibiofilm activity of selected culinary herbs
and medicinal plants against Listeria monocytogenes.
Letters in Applied Microbiology, 50(1), 30–35. DOI:
10.1111/j.1472-765X.2009.02747.x.
Schierle, C. F., De la Garza, M., Mustoe, T. A., & Galiano,
R. D. (2009). Staphylococcal biofilms impair wound
healing by delaying reepithelialization in a murine
cutaneous wound model. Wound Repair and
Regeneration, 17(3), 354–359. DOI: 10.1111/j.1524-
475X.2009.00489.x.