receptor signaling network. Cell Comm Sig. 13 (5): 1-
15.
Blenkiron, C., Goldstein, L. D., Thorne, N. P., et al., 2007.
MicroRNA expression profiling of human breast
cancer identifies new markers of tumor subtype.
Genome Biol, 8(10), 214.1–.16.
Brase, J.C., Wuttig, D., Kuner, R., et al., 2010. Serum
microRNAs as non-invasive biomarkers for cancer.
Mol Cancer, 9(1), 1–9.
Chan, H. S., & Zhang, Z. 2009. Liaison amid disorder: non-
native interactions may underpin long-range coupling
in proteins. Journal of Biology. 8(3): 27.
Chang, S. & Sharan, S.K., 2012. BRCA1 and microRNAs:
emerging networks and potential therapeutic targets.
Mol. Cells, 34(5), 425–32.
Chen, X., Liang, H., Zhang, J., et al., 2012. Secreted
microRNAs: a new form of intercellular
communication. Trends in cell biology, 22(3), 125–32.
Cheng, G. 2015. Circulating miRNAs: roles in cancer
diagnosis, prognosis and therapy. Advanced Drug
Delivery Reviews. 81: 75–93.
Corcoran, C., Friel, A. M., Duffy, M. J., et al., 2011.
Intracellular and extracellular microRNAs in breast
cancer. Clin Chem, 57(1), 18–32.
Cortez, M.A., Bueso-ramos, C., Ferdin, J., et al., 2011.
MicroRNAs in body fluids—the mix of hormones and
biomarkers. Nat Rev Clin Oncol, 8(8), 467–77.
Croker, B.A., Kiu, H. & Nicholson, S.E., 2009. SOCS
regulation of the JAK/STAT signaling pathway. Semin
Cell Dev Biol, 19(4), 414–22.
Faraoni, I. Antonetti, F. R., Cardone, J., et al., 2009. MiR-
155 gene: a typical multifunctional microRNA.
Biochim Biophys Acta, 1792(6), 497–505.
Fujimoto, M. & Naka, T., 2010. SOCS1 , a negative
regulator of cytokine signals and TLR responses , in
human liver diseases. Gastroenterol Res Pract, 2010,
1–7.
Garzon, R. Marcucci, G., & Croce, C. M. 2006. MicroRNA
expression and function in cancer. J Mol Med, 12(12),
580–7.
Gasparini, P., Cascione, L., Fassan, M., & Lovat, F. 2014.
MicroRNA expression profiling identifies a four
microRNA signature as a novel diagnostic and
prognostic biomarker in triple negative breast cancers.
Oncotarget. 5(5): 1174–84.
Gupta, N. & Mayer, D., 2013. Interaction of JAK with
steroid receptor function. JAK-STAT, 2, 37–41.
Higgs, G. & Slack, F., 2013. The multiple roles of
microRNA-155 in oncogenesis. J Clin Bioinformatics,
3, 1–8.
Huang, C. Li, H., Wu, W., et al., 2013. Regulation of miR-
155 affects pancreatic cancer cell invasiveness and
migration by modulating the STAT3 signaling
pathway through SOCS1. Oncol Rep, 30, 1223–30.
Iorio, M. V & Croce, C.M., 2012. MicroRNA dysregulation
in cancer : diagnostics , monitoring and therapeutics .
A comprehensive review. EMBO Mol Med, 4, 143–59.
Iorio, M. V & Croce, C.M., 2009. MicroRNAs in cancer:
small molecules with a huge impact. J Clin Oncol,
27(34), 5848–56.
Jiang, S. et al., 2012. A novel miR-155/miR-143 cascade
controls glycolysis by regulating hexokinase 2 in
breast cancer cells. EMBO J, 31(8), 1985–98.
Jiang, S., Zhang, H. & Lu, M., 2010. MicroRNA-155
functions as an oncomiR in breast cancer by targeting
the Suppressor of Cytokine Signaling 1 gene. Cancer
Res, 70, 3119–27.
Johansson, J. et al., 2013. MiR-155-mediated loss of
C/EBPβ shifts the TGF-β response from growth
inhibition to epithelial-mesenchymal transition,
invasion and metastasis in breast cancer. Oncogene,
32(50), 5614–24.
Kong, W. He, L., Coppola, M., et al., 2010. MicroRNA-155
regulates cell survival, growth, and chemosensitivity
by targeting FOXO3a in breast cancer. The Journal of
biological chemistry, 285(23), 17869–79.
Kosaka, N., Iguchi, H. & Ochiya, T., 2010. Circulating
microRNA in body fluid: a new potential biomarker
for cancer diagnosis and prognosis. Cancer Sci,
101(10), 2087–92.
Liu, J. Mao, Q., Liu, Y., et al., 2013. Analysis of miR-205
and miR-155 expression in the blood of breast cancer
patients. Chin J Cancer Res, 25(1), 46–54.
Lu, Z. Ye, Y., Jiao, D., et al., 2012. MiR-155 and miR-31
are differentially expressed in breast cancer patients
and are correlated with the estrogen receptor and
progesterone receptor status. Oncology Letters, 4(5),
1027–32.
Marini, A. et al., 2006. Epigenetic Inactivation of Tumor
Suppressor Genes in Serum of Patients with
Cutaneous Melanoma. J Invest Dermathol, 126, 422–
431.
Martin, E.C. Rhodes, L. Elliot, S., et al., 2014. microRNA
regulation of mammalian target of rapamycin
expression and activity controls estrogen receptor
function and RAD001 sensitivity. Mol Cancer, 13(1),
1–13.
Murray, P.J., 2007. The JAK-STAT signaling pathway:
input and output integration. J Immunol, 178,.2623–
29.
Ragan, C., Zuker, M., Ragan, M.A. 2011. Quantitative
prediction of miRNA-mRNA interaction based on
equilibrium concentrations. PLoS Compt Biol. 7 (2):
e10001090.
Rawlings, J.S., Kristin, M. & Harrison, D.A., 2004. The
JAK / STAT signaling pathway. J Cell Sci, 1(117),
1281–83.
Santillán-Benítez, J.G. Mendieta-Zeró, H., Gómez-Oliván,
L. M., et al., 2014. JAK2, STAT3 and SOCS3 gene
expression in women with and without breast cancer.
Gene, 547(1), 70–6.
Sasi, W. Jiang, W. G., Sharma, A., et al., 2010. Higher
expression levels of SOCS 1 , 3 , 4 , 7 are associated
with earlier tumour stage and better clinical outcome
in human breast cancer. BMC Cancer, 10(178), 1–13.
Sasi, W. Sharma, A. K., Mokbel, K., et al., 2014. The role
of Suppressors of Cytokine Signalling in human
neoplasms. Mol Biol Int, 2014, 1–24.