5 CONCLUSIONS
Nanoparticles were successfully synthesized using
AgNO
3
and Langsat leaf extract with the recorded
wavelength peak at 398 nm. The approximate size of
the LL-AgNP is 44 nm. Based on the results that are
obtained, we conclude that the LL-AgNP shows
antibacterial activity against Gram-negative bacteria
Escherichia coli and Gram-positive bacteria
Staphylococcus aureus. The LL-AgNP MIC is
observed at 6.25% on Escherichia coli and 25% on
Staphylococcus aureus. The MBC is observed at 25%
on Escherichia coli but no bactericidal activity is
observed on Staphylococcus aureus. Further tests
with different strains, concentrations, and methods
are suggested to add more diversity from the findings
of this study.
REFERENCES
Abbaszadegan, A., Ghahramani, Y., Gholami, A.,
Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., &
Sharghi, H. (2015). The Effect of Charge at the Surface
of Silver Nanoparticles on Antimicrobial Activity
against Gram-Positive and Gram-Negative Bacteria: A
Preliminary Study. Journal of Nanomaterials, 2015,
720654. https://doi.org/10.1155/2015/720654
Amirjani, A., Firouzi, F., & Haghshenas, D. F. (2020).
Predicting the Size of Silver Nanoparticles from Their
Optical Properties. Plasmonics.
https://doi.org/10.1007/s11468-020-01121-x
Badiah, H. I., Seedeh, F., Supriyanto, G., & Zaidan, A. H.
(2019). Synthesis of Silver Nanoparticles and the
Development in Analysis Method. IOP Conference
Series: Earth and Environmental Science, 217(1).
https://doi.org/10.1088/1755-1315/217/1/012005
Bae, E., Lee, B. C., Kim, Y., Choi, K., & Yi, J. (2013).
Effect of agglomeration of silver nanoparticle on
nanotoxicity depression. Korean Journal of Chemical
Engineering, 30(2), 364–368.
https://doi.org/10.1007/s11814-012-0155-4
Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues,
A. G., Souza, A. O., … Tasic, L. (2016). Elucidating
Protein Involvement in the Stabilization of the Biogenic
Silver Nanoparticles. Nanoscale Research Letters,
11(1). https://doi.org/10.1186/s11671-016-1538-y
Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D.
A., Mohan, N. M., Martins, M., & Fernandes, A. R.
(2018). Nano-strategies to fight multidrug resistant
bacteria-"A Battle of the Titans". Frontiers in
Microbiology, 9(JUL), 1–26.
https://doi.org/10.3389/fmicb.2018.01441
Castiglioni, S., Cazzaniga, A., Locatelli, L., & Maier, J. A.
M. (2017). Silver nanoparticles in orthopedic
applications: New insights on their effects on
osteogenic cells. Nanomaterials, 7(6).
https://doi.org/10.3390/nano7060124
Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B.,
Fávaro, W. J., & Nakazato, G. (2016). Silver
nanoparticles: A new view on mechanistic aspects on
antimicrobial activity. Nanomedicine:
Nanotechnology, Biology, and Medicine, 12(3), 789–
799. https://doi.org/10.1016/j.nano.2015.11.016
Ganesan, P., Reegan, A. D., David, R. H. A., Gandhi, M.
R., Paulraj, M. G., Al-Dhabi, N. A., & Ignacimuthu, S.
(2017). Antimicrobial activity of some actinomycetes
from Western Ghats of Tamil Nadu, India. Alexandria
Journal of Medicine, 53(2), 101–110.
https://doi.org/10.1016/j.ajme.2016.03.004
González, A. L., Noguez, C., Beránek, J., & Barnard, A. S.
(2014). Size, Shape, Stability, and Color of Plasmonic
Silver Nanoparticles. The Journal of Physical
Chemistry C, 118(17), 9128–9136.
https://doi.org/doi:10.1021/jp5018168
Kailasa, S. K., Park, T.-J., Rohit, J. V., & Koduru, J. R.
(2019). Antimicrobial activity of silver nanoparticles.
In Nanoparticles in Pharmacotherapy.
https://doi.org/10.1016/b978-0-12-816504-1.00009-0
Kawas, H. (2016). How Plant Extract Affect and Reduce
AgNO3? Retrieved February 21, 2020, from Reserach
Gate website:
https://www.researchgate.net/post/how_plant_extract_
affect_and_reduce_AgNO3
Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of
silver nanoparticles with different shapes. Arabian
Journal of Chemistry, 12(8), 1823–1838.
https://doi.org/10.1016/j.arabjc.2014.12.014
Linlin, W., Chen, H., & Longquan, S. (2017). The
antimicrobial activity of nanoparticles: present situation
and prospects for the future. International Journal of
Nanomedicine, 12, 1227–1249.
https://doi.org/10.2147/IJN.S121956
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., &
Chen, W. (2020). Antibacterial activity and mechanism
of linalool against Pseudomonas aeruginosa. Microbial
Pathogenesis, 141, 1469–1487.
https://doi.org/10.1016/j.micpath.2020.103980
Mandal, D., Kumar Dash, S., Das, B., Chattopadhyay, S.,
Ghosh, T., Das, D., & Roy, S. (2016). Bio-fabricated
silver nanoparticles preferentially targets Gram positive
depending on cell surface charge. Biomedicine &
Pharmacotherapy = Biomedecine &
Pharmacotherapie, 83, 548–558.
https://doi.org/10.1016/j.biopha.2016.07.011
Noah, N. (2019). Green synthesis: Characterization and
application of silver and gold nanoparticles. In Green
Synthesis, Characterization and Applications of
Nanoparticles. https://doi.org/10.1016/b978-0-08-
102579-6.00006-x
Nolan, R. (2018). Colloidal Silver vs Nano Silver.
Retrieved August 14, 2020, from
https://elementasilver.com/blog/colloidal-silver-vs-
nano-silver/
Ovais, M. (2016). The Reason for Green Colour of Silver
Nanoparticle. Retrieved February 17, 2020, from