G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R.
S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S.
M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., &
Angus, D. C., 2016. The third international nonsensus
definitions for sepsis and septic Shock (Sepsis-3).
JAMA, [online] 315(8), pp. 801–810.
Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., &
Moyano, S., 2017. Sepsis: a review of advances in
management. Advances in therapy, 34(11), pp. 2393–
2411.
Cheng, B., Hoeft, A. H., Book, M., Shu, Q., & Pastores, S.
M., 2015. Sepsis: pathogenesis, biomarkers, and
treatment. BioMed research international, [online],
2015, pp. 846935.
Chaudhry, H., Zhou, J., Zhong, Y., Ali, M. M., McGuire,
F., Nagarkatti, P. S., & Nagarkatti, M., 2013. Role of
cytokines as a double-edged sword in sepsis. In vivo,
[online] 27(6), pp. 669–684.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach,
I., Marini, F., Krause, D., Deans, R., Keating, A.,
Prockop, D. j., & Horwitz, E., 2006. Minimal criteria
for defining multipotent mesenchymal stromal cells.
The International Society for Cellular Therapy position
statement. Cytotherapy, [online] 8(4), pp. 315–317.
Mafi, P., S. Hindocha, R. Mafi, M. Griffin, and Khan W. S.,
2011. Adult mesenchymal stem cells and cell surface
characterization - a systematic review of the literature.
The open orthopaedics journal, [online], 5(Suppl 2),
pp. 253–260.
Okolicsanyi, R. K., Camilleri, E. T., Oikari, L. E., Yu, C.,
Cool, S. M., van Wijnen, A. J., Griffiths, L. R., &
Haupt, L. M., 2015. Human mesenchymal stem cells
retain multilineage differentiation capacity including
neural marker expression after extended in vitro
expansion. PloS one, [online], 10(9), pp. e0137255.
Nagamura-Inoue, T., & He, H., 2014. Umbilical cord-
derived mesenchymal stem cells: their advantages and
potential clinical utility. World journal of stem cells,
[online], 6(2), pp. 195–202.
Uccelli, A., Moretta, L., & Pistoia, V., 2008. Mesenchymal
stem cells in health and disease. Nature reviews,
[online], 8(9), pp. 726–736.
Németh, K., Leelahavanichkul, A., Yuen, P. S., Mayer, B.,
Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul,
K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star,
R. A., & Mezey, E., 2009. Bone marrow stromal cells
attenuate sepsis via prostaglandin E(2)-dependent
reprogramming of host macrophages to increase their
interleukin-10 production. Nature medicine, [online],
15(1), pp. 42–49.
Mei, S. H., Haitsma, J. J., Dos Santos, C. C., Deng, Y., Lai,
P. F., Slutsky, A. S., Liles, W. C., & Stewart, D. J.,
2010. Mesenchymal stem cells reduce inflammation
while enhancing bacterial clearance and improving
survival in sepsis. American journal of respiratory and
critical care medicine, [online], 182(8), pp. 1047–1057.
Gonzalez-Rey, E., Anderson, P., González, M. A., Rico, L.,
Büscher, D., & Delgado, M., 2009. adult stem cells
derived from adipose tissue protect against
experimental colitis and sepsis. Gut, [online], 58(7), pp.
929–939.
Gu, Y., He, M., Zhou, X., Liu, J., Hou, N., Bin, T., Zhang,
Y., Li, T., & Chen, J., 2016. Endogenous IL-6 of
mesenchymal stem cell improves behavioral outcome
of hypoxic-ischemic brain damage neonatal rats by
supressing apoptosis in astrocyte. Scientific reports,
[online], 6, pp. 18587.
Wang, J., Wang, Y., Wang, S., Cai, J., Shi, J., Sui, X., Cao,
Y., Huang, W., Chen, X., Cai, Z., Li, H., Bardeesi, A.
S., Zhang, B., Liu, M., Song, W., Wang, M., & Xiang,
A. P., 2015. Bone marrow-derived mesenchymal stem
cell-secreted IL-8 promotes the angiogenesis and
growth of colorectal cancer. Oncotarget, [online] 6(40),
pp. 42825–42837.
Bernardo, M. E., & Fibbe, W. E., 2013). Mesenchymal
stromal cells: sensors and switchers of inflammation.
Cell stem cell, [online], 13(4), pp. 392–402.
Johnson, V., Webb, T., Norman, A., Coy, J., Kurihara, J.,
Regan, D., & Dow, S., 2017. Activated mesenchymal
stem cells interact with antibiotics and host innate
immune responses to control chronic bacterial
infections. Scientific reports, [online], 7(1), pp. 1–18.
Kim, D. S., Lee, W. H., Lee, M. W., Park, H. J., Jang, I. K.,
Lee, J. W., Sung, K. W., Koo, H. H., & Yoo, K. H.,
2018. Involvement of TLR3-dependent PGES
expression in immunosuppression by human bone
marrow mesenchymal stem cells. Stem cell reviews and
reports, [online],14(2), pp. 286–293.
Krasnodembskaya, A., Song, Y., Fang, X., Gupta, N.,
Serikov, V., Lee, J. W., & Matthay, M. A., 2010.
Antibacterial effect of human mesenchymal stem cells
is mediated in part from secretion of the antimicrobial
peptide LL-37. Stem cells, [online], 28(12), pp.2229–
2238.
Chow, L., Johnson, V., Impastato, R., Coy, J., Strumpf, A.,
& Dow, S., 2020. Antibacterial activity of human
mesenchymal stem cells mediated directly by
constitutively secreted factors and indirectly by
activation of innate immune effector cells. Stem cells
translational medicine, [online], 9(2), pp. 235–249.
Brandau, S., Jakob, M., Bruderek, K., Bootz, F., Giebel, B.,
Radtke, S., Mauel, K., Jäger, M., Flohé, S. B., & Lang,
S., 2014. Mesenchymal stem cells augment the anti-
bacterial activity of neutrophil granulocytes. PloS one,
[online] 9(9), pp. e106903.
Aksoy, E., Taboubi, S., Torres, D., Delbauve, S., Hachani,
A., Whitehead, M. A., Pearce, W. P., Berenjeno, I. M.,
Nock, G., Filloux, A., Beyaert, R., Flamand, V., &
Vanhaesebroeck, B., 2012. The p110δ isoform of the
kinase PI(3)K controls the subcellular
compartmentalization of TLR4 signaling and protects
from endotoxic shock. Nature immunology, [online],
13(11), pp. 1045–1054.
IL-6 and IL-8 Suppression by Bacteria-adhered Mesenchymal Stem Cells Co-cultured with PBMCs under TNF- Exposure
317