REFERENCES
Bellmann, P., Thiam, P., and Schwenker, F. (2018). Multi-
classifier-Systems: Architectures, Algorithms and Ap-
plications, pages 83–113. Springer International Pub-
lishing, Cham.
Bellmann, P., Thiam, P., and Schwenker, F. (2019). Using
a quartile-based data transformation for pain intensity
classification based on the senseemotion database. In
2019 8th International Conference on Affective Com-
puting and Intelligent Interaction Workshops and De-
mos (ACIIW), pages 310–316.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C. J. (1984). Classification and Regression Trees.
Wadsworth.
Chan, A. D. C., Hamdy, M. M., Badre, A., and Badee, V.
(2008). Wavelet distance measure for person identifi-
cation using electrocardiograms. IEEE Trans. Instru-
mentation and Measurement, 57(2):248–253.
Davis, S. B. and Mermelstein, P. (1980). Comparison
of parametric representation for monosyllabic word
recognition in continuously spoken sentences. IEEE
Transactions on Acoustics Speech and Signal Process-
ing, 28(4):357–366.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22.
Hermansky, H. (1990). Perceptual linear predictive (plp)
analysis of speech. Journal of the Acoustical Society
of America, 87(4):1738–1752.
Hermansky, H., Morgan, N., Bayya, A., and Kohn, P.
(1992). Rasta-plp speech analysis technique. In Pro-
ceedings of the 1992 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
121–124.
Kessler, V., Thiam, P., Amirian, M., and Schwenker, F.
(2017a). Multimodal fusion including camera pho-
toplethysmography for pain recognition. In 2017
International Conference on Companion Technology
(ICCT), pages 1–4.
Kessler, V., Thiam, P., Amirian, M., and Schwenker, F.
(2017b). Pain recognition with camera photoplethys-
mography. In IPTA, pages 1–5. IEEE.
Kohonen, T. (1989). Self-Organization and Associative
Memory, Third Edition, volume 8 of Springer Series
in Information Sciences. Springer.
Linde, Y., Buzo, A., and Gray, R. (1980). An algorithm for
vector quantizer design. IEEE Transactions on Com-
munications, 28(1):84–95.
O’Rourke, J., Chien, C., Olson, T., and Naddor, D. (1982).
A new linear algorithm for intersecting convex poly-
gons. Computer Graphics and Image Processing,
19(4):384–391.
Penrose, R. (1955). A generalized inverse for matrices. In
Proceedings of the Cambridge Philosophical Society,
volume 51, pages 406–413.
Poulos, M., Rangoussi, M., and Alexandris, N. (1999).
Neural network based person identification using EEG
features. In ICASSP, pages 1117–1120. IEEE Com-
puter Society.
Poulos, M., Rangoussi, M., Chrissikopoulos, V., and Evan-
gelou, A. (1999a). Parametric person identifica-
tion from the eeg using computational geometry. In
ICECS’99. Proceedings of ICECS ’99. 6th IEEE In-
ternational Conference on Electronics, Circuits and
Systems (Cat. No.99EX357), volume 2, pages 1005–
1008 vol.2.
Poulos, M., Rangoussi, M., Chrissikopoulos, V., and Evan-
gelou, A. (1999b). Person identification based on
parametric processing of the eeg. In ICECS’99. Pro-
ceedings of ICECS ’99. 6th IEEE International Con-
ference on Electronics, Circuits and Systems (Cat.
No.99EX357), volume 1, pages 283–286 vol.1.
Schwenker, F., Dietrich, C. R., Thiel, C., and Palm, G.
(2006). Learning of decision fusion mappings for pat-
tern recognition. International Journal on Artificial
Intelligence and Machine Learning (AIML), 6:17–21.
Snoek, C., Worring, M., and Smeulders, A. W. M. (2005).
Early versus late fusion in semantic video analysis. In
ACM Multimedia, pages 399–402. ACM.
Suresh, M., Krishnamohan, P. G., and Holi, M. S. (2011).
Gmm modeling of person information from emg sig-
nals. In 2011 IEEE Recent Advances in Intelligent
Computational Systems, pages 712–717.
Thiam, P., Bellmann, P., Kestler, H. A., and Schwenker, F.
(2019a). Exploring deep physiological models for no-
ciceptive pain recognition. Sensors, 19(20).
Thiam, P., Kessler, V., Amirian, M., Bellmann, P., Layher,
G., Zhang, Y., Velana, M., Gruss, S., Walter, S., Traue,
H. C., Kim, J., Schork, D., Andr´e, E., Neumann, H.,
and Schwenker, F. (2019b). Multi-modal pain inten-
sity recognition based on the senseemotion database.
IEEE Transactions on Affective Computing, pages 1–
1.
Thiam, P., Kessler, V., Walter, S., Palm, G., and Scwenker,
F. (2017). Audio-visual recognition of pain intensity.
In Multimodal Pattern Recognition of Social Signals
in Human-Computer-Interaction, pages 110–126.
Thiam, P. and Schwenker, F. (2017). Multi-modal data fu-
sion for pain intensity assessement and classification.
In 2017 Seventh International Conference on Image
Processing Theory, Tools and Applications (IPTA),
pages 1–6.
Velana, M., Gruss, S., Layher, G., Thiam, P., Zhang, Y.,
Schork, D., Kessler, V., Meudt, S., Neumann, H.,
Kim, J., Schwenker, F., Andr´e, E., Traue, H. C., and
Walter, S. (2016). The senseemotion database: A
multimodal database for the development and system-
atic validation of an automatic pain- and emotion-
recognition system. In MPRSS, volume 10183 of
Lecture Notes in Computer Science, pages 127–139.
Springer.
Wilcoxon, F. (1945). Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80–83.
ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods