stochastic generalized assignment problems. Euro-
pean Journal of Operational Research, 173(2):465–
487.
Albright, S. C. (1974). Optimal sequential assignments with
random arrival times. Management Science, 21(1):60–
67.
Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., How,
J. P., and Kaelbling, L. P. (2015). Planning for decen-
tralized control of multiple robots under uncertainty.
In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 1241–1248. IEEE.
Baharian Khoshkhou, G. (2014). Stochastic sequential as-
signment problem. PhD thesis, University of Illinois
at Urbana-Champaign.
Boschert, S. and Rosen, R. (2016). Digital twin—the sim-
ulation aspect. In Mechatronic Futures, pages 59–74.
Springer.
Braekers, K., Janssens, G. K., and Caris, A. (2011).
Challenges in managing empty container movements
at multiple planning levels. Transport Reviews,
31(6):681–708.
Buckman, N., Choi, H.-L., and How, J. P. (2019). Partial
replanning for decentralized dynamic task allocation.
In AIAA Scitech 2019 Forum, page 0915.
Chen, Z., Cheng, P., Zeng, Y., and Chen, L. (2019). Min-
imizing maximum delay of task assignment in spatial
crowdsourcing. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 1454–
1465. IEEE.
Cheng, P., Lian, X., Chen, L., and Shahabi, C. (2017).
Prediction-based task assignment in spatial crowd-
sourcing. In 2017 IEEE 33rd International Confer-
ence on Data Engineering (ICDE), pages 997–1008.
IEEE.
Coffman, E. G., So, K., Hofri, M., and Yao, A. (1980).
A stochastic model of bin-packing. Information and
Control, 44(2):105–115.
David, I. and Yechiali, U. (1995). One-attribute sequential
assignment match processes in discrete time. Opera-
tions Research, 43(5):879–884.
Derman, C., Lieberman, G. J., and Ross, S. M. (1972). A se-
quential stochastic assignment problem. Management
Science, 18(7):349–355.
Derman, C., Lieberman, G. J., and Ross, S. M. (1975).
A stochastic sequential allocation model. Operations
Research, 23(6):1120–1130.
Gavish, B. and Pirkul, H. (1991). Algorithms for the multi-
resource generalized assignment problem. Manage-
ment Science, 37(6):695–713.
Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rin-
nooy Kan, A. (1979). Optimization and approxima-
tion in deterministic sequencing and scheduling: a
survey. Annals of Discrete Mathematics, 5:287–326.
Gutjahr, W. J. and Reiter, P. (2010). Bi-objective project
portfolio selection and staff assignment under uncer-
tainty. Optimization: A Journal of Mathematical Pro-
gramming and Operations Research, 59(3):417–445.
Haneveld, W. K. K., Stougie, L., and Van der Vlerk, M. H.
(2006). Simple integer recourse models: convexity
and convex approximations. Mathematical program-
ming, 108(2-3):435–473.
Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Peter-
ing, M., and Tou, T. W. (2018). A survey of dial-a-
ride problems: Literature review and recent develop-
ments. Transportation Research Part B: Methodolog-
ical, 111:395–421.
Jagtenberg, C., Bhulai, S., and van der Mei, R. (2015). An
efficient heuristic for real-time ambulance redeploy-
ment. Operations Research for Health Care, 4:27–35.
Ji, S., Zheng, Y., Wang, W., and Li, T. (2019). Real-time
ambulance redeployment: A data-driven approach.
IEEE Transactions on Knowledge and Data Engineer-
ing.
Kogan, K., Khmelnitsky, E., and Ibaraki, T. (2005). Dy-
namic generalized assignment problems with stochas-
tic demands and multiple agent–task relationships.
Journal of Global Optimization, 31(1):17–43.
Kooiman, K., Phillipson, F., and Sangers, A. (2016). Plan-
ning inland container shipping: a stochastic assign-
ment problem. In International Conference on Ana-
lytical and Stochastic Modeling Techniques and Ap-
plications, pages 179–192. Springer.
Kools, L. and Phillipson, F. (2016). Data granularity and the
optimal planning of distributed generation. Energy,
112:342–352.
Lamiri, M., Grimaud, F., and Xie, X. (2009). Optimiza-
tion methods for a stochastic surgery planning prob-
lem. International Journal of Production Economics,
120(2):400–410.
Leenman, T. and Phillipson, F. (2015). Optimal placing of
wind turbines: Modelling the uncertainty. Journal of
Clean Energy Technologies, 3(2):91–105.
Liu, L. and Shell, D. A. (2011). Assessing optimal as-
signment under uncertainty: An interval-based algo-
rithm. The International Journal of Robotics Re-
search, 30(7):936–953.
McLay, L. A., Jacobson, S. H., and Nikolaev, A. G. (2009).
A sequential stochastic passenger screening problem
for aviation security. IIE Transactions, 41(6):575–
591.
Murphey, R. A. (2000). An approximate algorithm for a
weapon target assignment stochastic program. In Ap-
proximation and Complexity in Numerical Optimiza-
tion, pages 406–421. Springer.
Nikolaev, A. G., Jacobson, S. H., and McLay, L. A. (2007).
A sequential stochastic security system design prob-
lem for aviation security. Transportation Science,
41(2):182–194.
Phillipson, F. (2015). Planning nurses in maternity care: a
stochastic assignment problem. Journal of Physics:
Conference Series, 616(1):012006.
Powell, W. B. (1996). A stochastic formulation of the
dynamic assignment problem, with an application to
truckload motor carriers. Transportation Science,
30(3):195–219.
Punnakitikashem, P., Rosenberger, J. M., and Behan, D. B.
(2008). Stochastic programming for nurse assign-
ment. Computational Optimization and Applications,
40(3):321–349.
ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems
136