Brown, L. M., Bongar, B., and Cleary, K. M. (2004). A
profile of psychologists’ views of critical risk factors
for completed suicide in older adults. Professional
Psychology: Research and Practice, 35(1):90.
Buchanan, D., Tourigny-Rivard, M., Cappeliez, P., Frank,
C., Janikowski, P., Spanjevic, L., Malach, F., Mokry,
J., Flint, A., and Herrmann, N. (2006). National
guidelines for seniors’ mental health: the assessment
and treatment of depression. Canadian Journal of
Geriatrics, 9(supplement 2):S52–S58.
Carlson, N. (2011). The real history of twitter. business
insider. Featured Articles From The Business Insider,
13.
Conwell, Y., Pearson, J., and DeRenzo, E. G. (1996). Indi-
rect self-destructive behavior among elderly patients
in nursing homes: a research agenda. The American
Journal of Geriatric Psychiatry, 4(2):152–163.
Glass Jr, J. C. and Reed, S. E. (1993). To live or die: A
look at elderly suicide. Educational Gerontology: An
International Quarterly, 19(8):767–778.
Gunn, J. F. and Lester, D. (2015). Twitter postings and sui-
cide: An analysis of the postings of a fatal suicide in
the 24 hours prior to death. Suicidologi, 17(3).
Hwang, J.-N. and Hu, Y. H. (2001). Handbook of neural
network signal processing. CRC press.
Ikunaga, A., Nath, S. R., and Skinner, K. A. (2013). In-
ternet suicide in japan: A qualitative content analysis
of a suicide bulletin board. Transcultural psychiatry,
50(2):280–302.
Jashinsky, J., Burton, S. H., Hanson, C. L., West, J., Giraud-
Carrier, C., Barnes, M. D., and Argyle, T. (2014).
Tracking suicide risk factors through twitter in the us.
Crisis: The Journal of Crisis Intervention and Suicide
Prevention, 35(1):51.
Kaplan, A. M. and Haenlein, M. (2010). Users of the world,
unite! the challenges and opportunities of social me-
dia. Business horizons, 53(1):59–68.
Karau, H., Konwinski, A., Wendell, P., and Zaharia, M.
(2015). Learning spark: lightning-fast big data anal-
ysis. ” O’Reilly Media, Inc.”.
Matykiewicz, P., Duch, W., and Pestian, J. (2009). Cluster-
ing semantic spaces of suicide notes and newsgroups
articles. In Proceedings of the Workshop on Current
Trends in Biomedical Natural Language Processing,
pages 179–184. Association for Computational Lin-
guistics.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133.
Navaneelan, T. (2012). Suicide rates: An overview. Statis-
tics Canada Ottawa, Canada.
Pang, B., Lee, L., et al. (2008). Opinion mining and senti-
ment analysis. Foundations and Trends
R
in Informa-
tion Retrieval, 2(1–2):1–135.
Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001).
Linguistic inquiry and word count: Liwc 2001. Mah-
way: Lawrence Erlbaum Associates, 71(2001):2001.
Poulin, C., Shiner, B., Thompson, P., Vepstas, L., Young-
Xu, Y., Goertzel, B., Watts, B., Flashman, L., and
McAllister, T. (2014). Predicting the risk of suicide
by analyzing the text of clinical notes. PloS one,
9(1):e85733.
Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386.
Sueki, H. (2015). The association of suicide-related twitter
use with suicidal behaviour: a cross-sectional study
of young internet users in japan. Journal of affective
disorders, 170:155–160.
Won, H.-H., Myung, W., Song, G.-Y., Lee, W.-H., Kim, J.-
W., Carroll, B. J., and Kim, D. K. (2013). Predicting
national suicide numbers with social media data. PloS
one, 8(4):e61809.
Yip, P. S., Chi, I., Chiu, H., Chi Wai, K., Conwell, Y.,
and Caine, E. (2003). A prevalence study of suicide
ideation among older adults in hong kong sar. Inter-
national journal of geriatric psychiatry, 18(11):1056–
1062.
ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence
346