Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D.,
Macii, E., Pardo, A., and Somenzi, F. (1997). Alge-
bric decision diagrams and their applications. Formal
methods in system design, 10(2-3):171–206.
Baldoni, V., Berline, N., De Loera, J., K
¨
oppe, M., and
Vergne, M. (2011). How to integrate a polyno-
mial over a simplex. Mathematics of Computation,
80(273):297–325.
Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C.
(2009). Satisfiability modulo theories. In (Biere et al.,
2009), pages 825–885.
Bekker, J., Davis, J., Choi, A., Darwiche, A., and Van den
Broeck, G. (2015). Tractable learning for complex
probability queries. In Advances in Neural Informa-
tion Processing Systems, pages 2242–2250.
Belle, V., Passerini, A., and Van den Broeck, G. (2015).
Probabilistic inference in hybrid domains by weighted
model integration. In Proceedings of 24th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 2770–2776.
Belle, V., Van den Broeck, G., and Passerini, A. (2016).
Component caching in hybrid domains with piecewise
polynomial densities. In Proceedings of the 30th Con-
ference on Artificial Intelligence (AAAI).
Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh,
T. (2009). Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications.
IOS Press, Amsterdam, The Netherlands, The Nether-
lands.
Chavira, M. and Darwiche, A. (2008). On probabilistic in-
ference by weighted model counting. Artificial Intel-
ligence, 172(6-7):772–799.
Chistikov, D., Dimitrova, R., and Majumdar, R. (2017). Ap-
proximate counting in smt and value estimation for
probabilistic programs. Acta Informatica, 54(8):729–
764.
Choi, A. and Darwiche, A. (2013). Dynamic minimization
of sentential decision diagrams. In AAAI.
Choi, A., Kisa, D., and Darwiche, A. (2013). Compiling
probabilistic graphical models using sentential deci-
sion diagrams. In European Conference on Symbolic
and Quantitative Approaches to Reasoning and Un-
certainty, pages 121–132. Springer.
Darwiche, A. (2004). New advances in compiling cnf to
decomposable negation normal form. In Proceedings
of the 16th European Conference on Artificial Intelli-
gence, pages 318–322. Citeseer.
Darwiche, A. (2011). Sdd: A new canonical represen-
tation of propositional knowledge bases. In IJCAI
Proceedings-International Joint Conference on Arti-
ficial Intelligence, volume 22, page 819.
Darwiche, A. and Marquis, P. (2002). A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17(1):229–264.
De Loera, J., Dutra, B., Koeppe, M., Moreinis, S., Pinto,
G., and Wu, J. (2011). Software for exact integra-
tion of polynomials over polyhedra. arXiv preprint
arXiv:1108.0117.
De Loera, J. A., Hemmecke, R., Tauzer, J., and Yoshida,
R. (2004). Effective lattice point counting in rational
convex polytopes. Journal of symbolic computation,
38(4):1273–1302.
Fierens, D., Van den Broeck, G., Renkens, J., Shterionov,
D., Gutmann, B., Thon, I., Janssens, G., and De Raedt,
L. (2015). Inference and learning in probabilistic logic
programs using weighted boolean formulas. Theory
and Practice of Logic Programming, 15(3):358–401.
Gomes, C. P., Sabharwal, A., and Selman, B. (2009). Model
counting. In (Biere et al., 2009), pages 633–654.
Kimmig, A., Van den Broeck, G., and De Raedt, L. (2016).
Algebraic model counting. International Journal of
Applied Logic.
Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A.
(2014). Probabilistic sentential decision diagrams. In
KR.
Kolb, S., Mladenov, M., Sanner, S., Belle, V., and Kersting,
K. (2018). Efficient symbolic integration for proba-
bilistic inference. In IJCAI, pages 5031–5037.
Kolb, S., Zuidberg Dos Martires, P. M., and De Raedt,
L. (2019). How to exploit structure while solving
weighted model integration problems. UAI 2019 Pro-
ceedings.
Liang, Y., Bekker, J., and Van den Broeck, G. (2017).
Learning the structure of probabilistic sentential deci-
sion diagrams. In Proceedings of the 33rd Conference
on Uncertainty in Artificial Intelligence (UAI).
Martires, P., Dries, A., and De Raedt, L. (2019). Exact and
approximate weighted model integration with proba-
bility density functions using knowledge compilation.
Proceedings of the AAAI Conference on Artificial In-
telligence, 33:7825–7833.
Morettin, P., Passerini, A., and Sebastiani, R. (2017). Effi-
cient weighted model integration via smt-based predi-
cate abstraction. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 720–728.
Muise, C., McIlraith, S. A., Beck, J. C., and Hsu, E. I.
(2012). D sharp: fast d-dnnf compilation with sharp-
sat. In Canadian Conference on Artificial Intelligence,
pages 356–361. Springer.
Poon, H. and Domingos, P. (2011). Sum-product networks:
A new deep architecture. In Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International
Conference on, pages 689–690. IEEE.
Sang, T., Beame, P., and Kautz, H. A. (2005). Performing
bayesian inference by weighted model counting. In
AAAI, volume 5, pages 475–481.
Sanner, S., Delgado, K., and Barros, L. (2012). Sym-
bolic dynamic programming for discrete and contin-
uous state mdps. CoRR, abs/1202.3762.
Shenoy, P. P. and West, J. C. (2011). Inference in hy-
brid bayesian networks using mixtures of polynomi-
als. International Journal of Approximate Reasoning,
52(5):641–657.
Suciu, D., Olteanu, D., R
´
e, C., and Koch, C. (2011). Proba-
bilistic databases. Synthesis lectures on data manage-
ment, 3(2):1–180.
Van den Broeck, G. and Darwiche, A. (2015). On the role of
canonicity in knowledge compilation. In AAAI, pages
1641–1648.
Scaling up Probabilistic Inference in Linear and Non-linear Hybrid Domains by Leveraging Knowledge Compilation
355