terpolation merely re-samples the pixel values from
the original pixel value set, so that no smoothing or
ringing artifacts are produced. Nearest neighbor in-
terpolation demonstrably preserves the distribution of
augmentation images within the original image distri-
bution, which is apparent in preserved feature separa-
tion quality and classification capability.
It is not surprising news that one has to be very
thorough compiling and maintaining a training data
set for a deep learning system. But, since CNNs
are very powerful approximators of high-dimensional
data distributions, one has also to be wary when
choosing an interpolation method for image augmen-
tation. We showed that the wrong choice leads to de-
viations w.r.t. the original image distributions, caus-
ing distortions of the feature distributions, which di-
rectly affect classification performance and system re-
liability.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Man
´
e, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Jour-
nal of Software Tools.
Chechik, G., Sharma, V., Shalit, U., and Bengio, S.
(2010). Large scale online learning of image similarity
through ranking. J. Mach. Learn. Res., 11:1109–1135.
Gosh, S., Singh, R., and Vatsa, M. (2019). On learning
density aware embeddings. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Huber-M
¨
ork, R., N
¨
olle, M., Rubik, M., H
¨
odlmoser, M.,
Kampel, M., and Zambanini, S. (2012). Automatic
coin classification and identification. In Kypraios, I.,
editor, Advances in Object Recognition Systems, chap-
ter 7. IntechOpen, Rijeka.
Huber-M
¨
ork, R., Ramoser, H., Mayer, K., Penz, H., and
Rubik, M. (2005). Classification of coins using an
eigenspace approach. Pattern Recogn. Lett. 26(1),
pages 61–75.
Huber-M
¨
ork, R., Zaharieva, M., and Czedik-Eysenberg, H.
(2008). Numismatic object identification using fusion
of shape and local descriptors. In Proc. Symp. on Vi-
sual Computing, pages 368–379.
Huber-M
¨
ork, R., Zambanini, S., Zaharieva, M., and Kam-
pel, M. (2010). Identification of ancient coins based
on fusion of shape and local features. Machine Vision
and Applications.
Kampel, M., Huber-M
¨
ork, R., and Zaharieva, M. (2009).
Image-based retrieval and identification of ancient
coins. In IEEE Intell. Syst. 24(2), pages 26–34.
Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. of Comput. Vision 60(2),
pages 91–110.
N
¨
olle, M. and Hanbury, A. (2006). Muscle coin images
seibersdorf (cis) benchmark competition 2006. In
IAPR Newsletter 28(2), pages 18–19.
N
¨
olle, M., Penz, H., Rubik, M., Mayer, K., Holl
¨
ander, I.,
and Granec, R. (2003). Dagobert – a new coin recog-
nition and sorting system. In Proc of Int. Conf. on
Digital Image Computing – Techniques and Applica-
tions, pages 329–338.
N
¨
olle, M., Rubik, M., and Hanbury, A. (2006). Re-
sults of the muscle cis coin competition 2006. In
Proc. of the Muscle CIS Coin Competition Work-
shop,Berlin,Germany.
Reisert, M., Ronneberger, O., and Burkhardt, H. (2006). An
efficient gradient based registration technique for coin
recognition. In Proc. Muscle CIS Coin Competition
Workshop, pages 19–31.
Reisert, M., Ronneberger, O., and Burkhardt, H. (2007). A
fast and reliable coin recognition system. In Proc. of
DAGM, pages 415–424.
Schilling, A., Rietsch, J., Gerum, R., Schulze, H., Metzner,
C., and Krauss, P. (2018). How deep is deep enough?
- optimizing deep neural network architecture. CoRR,
abs/1811.01753.
Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. CoRR, abs/1503.03832.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Snell, J., Swersky, K., and Zemel, R. (2017). Prototyp-
ical networks for few-shot learning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30, pages
4077–4087. Curran Associates, Inc.
Tipping, M. E. and Bishop, C. M. (1999). Mixtures of prob-
abilistic principal component analyzers. Neural Com-
putation, 11:443–482.
Wang, F., Xiang, X., Cheng, J., and Yuille, A. L. (2017).
Normface: L2 hypersphere embedding for face verifi-
cation. In Proceedings of the 25th ACM International
Conference on Multimedia, MM ’17, pages 1041–
1049, New York, NY, USA. ACM.
Yang, H., Zhang, X., Yin, F., and Liu, C. (2018). Robust
classification with convolutional prototype learning.
CoRR, abs/1805.03438.
Zaharieva, M., Huber-M
¨
ork, R., N
¨
olle, M., and Kampel, M.
(2007). On ancient coin classification. In Proc. of Int.
Symp. on Virtual Reality, Archaeology and Cultural
Heritage, pages 55–62.
ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods
394