Karimi, H. A. and Liu, X. (2003). A predictive location
model for location-based services. In Proceedings of
the 11th International Symposium on Advances in Ge-
ographic Information Systems, pages 126–133, New
Orleans, Louisiana, USA. ACM.
Krumm, J. (2016). A markov model for driver turn predic-
tion.
Lassoued, Y., Monteil, J., Gu, Y., Russo, G., Shorten, R.,
and Mevissen, M. (2017). A Hidden Markov model
for route and destination prediction. In 20th IEEE In-
ternational Conference on Intelligent Transportation
Systems, ITSC 2017, pages 1–6, Yokohama, Japan.
IEEE.
Liao, Z. (2003). Real-time taxi dispatching using global
positioning systems. Association for Computing Ma-
chinery. Communications of the ACM, 46(5):81–81.
Liebner, M., Baumann, M., Klanner, F., and Stiller, C.
(2012). Driver intent inference at urban intersections
using the intelligent driver model. In Proceedings
of the 2012 Intelligent Vehicles Symposium, IV 2012,
pages 1162–1167, Alcal de Henares, Madrid, Spain.
IEEE.
Liu, X. and Karimi, H. A. (2006). Location awareness
through trajectory prediction. Computers, Environ-
ment and Urban Systems, 30(6):741–756.
Masoud, N. and Jayakrishnan, R. (2017). A real-time algo-
rithm to solve the peer-to-peer ride-matching problem
in a flexible ridesharing system. Transportation Re-
search Part B: Methodological, 106:218–236.
Miklusc
´
ak, T., Gregor, M., and Janota, A. (2012). Using
Neural Networks for Route and Destination Predic-
tion in Intelligent Transport Systems. In Proceed-
ings of the 12th International Conference on Trans-
port Systems Telematics, TST 2012, pages 380–387,
Katowice-Ustro
´
n, Poland.
Newson, P. and Krumm, J. (2009). Hidden markov map
matching through noise and sparseness. In Proceed-
ings of the 17th ACM SIGSPATIAL international con-
ference on advances in geographic information sys-
tems, pages 336–343. ACM.
Patterson, D. J., Liao, L., Fox, D., and Kautz, H. A. (2003).
Inferring High-Level Behavior from Low-Level Sen-
sors. In Proceedings of the 5th International Confer-
ence on Ubiquitous Computing, pages 73–89, Seattle,
Washington, USA.
Phillips, D. J., Wheeler, T. A., and Kochenderfer, M. J.
(2017). Generalizable intention prediction of human
drivers at intersections. In Proceedings of the 2017 In-
telligent Vehicles Symposium, pages 1665–1670, Los
Angeles, California, USA.
Psaraftis, H. N. (1995). Dynamic vehicle routing: Sta-
tus and prospects. Annals of Operations Research,
61(1):143–164.
Psaraftis, H. N., Wen, M., and Kontovas, C. A. (2016). Dy-
namic vehicle routing problems: Three decades and
counting. Networks, 67(1):3–31.
Richly, K. and Teusner, R. (2016). Where is the money
made? an interactive visualization of profitable areas
in new york city. In The 2nd EAI International Con-
ference on IoT in Urban Space (Urb-IoT).
Simmons, R. G., Browning, B., Zhang, Y., and Sadekar, V.
(2006). Learning to Predict Driver Route and Des-
tination Intent. In Intelligent Transportation Systems
Conference, ITSC 2006, pages 127–132. IEEE.
Trasarti, R., Guidotti, R., Monreale, A., and Giannotti, F.
(2017). MyWay: Location prediction via mobility
profiling. Information Systems, 64:350–367.
Treiber, M. and Kesting, A. (2013). Traffic Flow Dynamics.
Traffic Flow Dynamics: Data, Models and Simulation.
Wang, Y., Zhu, Y., He, Z., Yue, Y., and Li, Q. (2011). Chal-
lenges and opportunities in exploiting large-scale GPS
probe data. HP Laboratories, Technical Report HPL-
2011-109, 21.
Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu,
C., Bian, W., and Ye, J. (2018). Large-scale or-
der dispatch in on-demand ride-hailing platforms: A
learning and planning approach. In Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 905–
913. ACM.
Ye, N., Wang, Z. Q., Malekian, R., Lin, Q., and Wang,
R. C. (2015). A Method for Driving Route Predic-
tions Based on Hidden Markov Model. Mathematical
Problems in Engineering, 2015:1–12.
Zhou, J., Tung, A. K., Wu, W., and Ng, W. S. (2013). A
”semi-lazy” approach to probabilistic path prediction.
In Proceedings of the 19th International Conference
on Knowledge Discovery and Data Mining, page 748,
Chicago, Illinois, USA.
Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
(2008a). Maximum Entropy Inverse Reinforcement
Learning. In Proceedings of the 23rd Conference
on Artificial Intelligence, pages 1433–1438, Chicago,
Illinois, USA.
Ziebart, B. D., Maas, A. L., Dey, A. K., and Bagnell,
J. A. (2008b). Navigate like a cabbie: probabilistic
reasoning from observed context-aware behavior. In
Proceedings of the 10th International Conference on
Ubiquitous Computing, pages 322–331, Seoul, Korea.
Zyner, A., Worrall, S., Ward, J. R., and Nebot, E. M. (2017).
Long short term memory for driver intent prediction.
In Intelligent Vehicles Symposium, IV 2017, pages
1484–1489, Los Angeles, California, USA. IEEE.
ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems
58