some insight about applicable strategies of protecting
the integrity of one’s personal identity.
REFERENCES
Berghel, H. (2012). Identity theft and financial fraud: Some
strangeness in the proportions. Computer, 45(1):86–
89.
Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Athena Scientific, 1st edition.
Carin, L., Cybenko, G., and Hughes, J. (2008). Cybersecu-
rity strategies: The queries methodology. Computer,
41(8):20–26.
Chang, K. C., Zaeem, R. N., and Barber, K. S. (2018). En-
hancing and evaluating identity privacy and authenti-
cation strength by utilizing the identity ecosystem. In
Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, pages 114–120. ACM.
Delaitre, S. (2006). Risk management approach on identity
theft in biometric systems context. In First Interna-
tional Conference on Availability, Reliability and Se-
curity (ARES’06), pages 4 pp.–982.
Goode, S. and Lacey, D. (2017). Designing and evaluating
two interventions to improve identity theft recovery
outcomes. In 2017 IEEE International Symposium on
Technology and Society (ISTAS), pages 1–6.
Harrell, E. (2017). Victims of identity theft. Bureau of
Justice Statistics.
Khattak, Z. A., Sulaiman, S., and Manan, J. A. (2010). A
study on threat model for federated identities in fed-
erated identity management system. In 2010 Inter-
national Symposium on Information Technology, vol-
ume 2, pages 618–623.
Kumar, P. and Shiau, T. (1981). Zero-sum dynamic games.
In LEONDES, C., editor, Advances in Theory and Ap-
plications, volume 17 of Control and Dynamic Sys-
tems, pages 345 – 378. Academic Press.
Lacey, D., Zaiss, J., and Barber, K. S. (2016). Understand-
ing victim-enabled identity theft. In 2016 14th An-
nual Conference on Privacy, Security and Trust (PST),
pages 196–202.
Liau, D., Zaeem, R. N., and Barber, K. S. (2019). Evalua-
tion framework for future privacy protection systems.
In International Conference on Privacy, Security and
Trust (PST), pages 339–341.
Manshaei, M. H., Zhu, Q., Alpcan, T., Bacs¸ar, T., and
Hubaux, J.-P. (2013). Game theory meets network se-
curity and privacy. ACM Comput. Surv., 45(3):25:1–
25:39.
Mashima, D. and Ahamad, M. (2008). Towards a user-
centric identity-usage monitoring system. In 2008 The
Third International Conference on Internet Monitor-
ing and Protection, pages 47–52.
Panigrahi, S., Kundu, A., Sural, S., and Majumdar, A.
(2009). Credit card fraud detection: A fusion ap-
proach using dempstershafer theory and bayesian
learning. Information Fusion, 10(4):354 – 363. Spe-
cial Issue on Information Fusion in Computer Secu-
rity.
Patek, S. and Bertsekas, D. (1999). Stochastic shortest path
games. SIAM Journal on Control and Optimization,
37(3):804–824.
Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V.,
and Wu, Q. (2010). A survey of game theory as ap-
plied to network security. In 2010 43rd Hawaii Inter-
national Conference on System Sciences, pages 1–10.
Senda, K., Hattori, S., Hishinuma, T., and Kohda, T. (2014).
Acceleration of reinforcement learning by policy eval-
uation using nonstationary iterative method. IEEE
Transactions on Cybernetics, 44(12):2696–2705.
Shah, M. and Okeke, R. I. (2011). A framework for inter-
nal identity theft prevention in retail industry. In 2011
European Intelligence and Security Informatics Con-
ference, pages 366–371.
Shapley, L. S. (1953). Stochastic games. Proceedings of the
National Academy of Sciences, 39(10):1095–1100.
Yuan Cao and Lin Yang (2010). A survey of identity man-
agement technology. In 2010 IEEE International Con-
ference on Information Theory and Information Secu-
rity, pages 287–293.
Zaeem, R. N., Budalakoti, S., Barber, K. S., Rasheed, M.,
and Bajaj, C. (2016). Predicting and explaining iden-
tity risk, exposure and cost using the ecosystem of
identity attributes. In 2016 IEEE International Car-
nahan Conference on Security Technology (ICCST),
pages 1–8.
An Evaluation Framework for Future Privacy Protection Systems: A Dynamic Identity Ecosystem Approach
143