Baarslag, T., Hendrikx, M. J., Hindriks, K. V., and Jonker,
C. M. (2016). Learning about the opponent in au-
tomated bilateral negotiation: a comprehensive sur-
vey of opponent modeling techniques. Autonomous
Agents and Multi-Agent Systems, 30(5):849–898.
Bellemare, M. G., Dabney, W., and Munos, R. (2017). A
distributional perspective on reinforcement learning.
arXiv preprint arXiv:1707.06887.
Boutilier, C. (1996). Planning, learning and coordination in
multiagent decision processes. In Proceedings of the
6th conference on Theoretical aspects of rationality
and knowledge, pages 195–210. Morgan Kaufmann
Publishers Inc.
Bus¸oniu, L., Babu
ˇ
ska, R., and De Schutter, B. (2010).
Multi-agent reinforcement learning: An overview. In
Innovations in multi-agent systems and applications-
1, pages 183–221. Springer.
Ellingsen, T. (1997). The evolution of bargaining behav-
ior. The Quarterly Journal of Economics, 112(2):581–
602.
Fang, F., Xin, Y., Yun, X., and Haitao, X. (2008). An oppo-
nent’s negotiation behavior model to facilitate buyer-
seller negotiations in supply chain management. In
2008 International Symposium on Electronic Com-
merce and Security, pages 582–587. IEEE.
Fatima, S., Wooldridge, M., and Jennings, N. R. (2003).
Comparing equilibria for game theoretic and evolu-
tionary bargaining models. In 5th International Work-
shop on Agent-Mediated E-Commerce, pages 70–77.
Fatima, S. S., Wooldridge, M., and Jennings, N. R. (2005).
A comparative study of game theoretic and evolution-
ary models of bargaining for software agents. Artifi-
cial Intelligence Review, 23(2):187–205.
Garcıa, J. and Fern
´
andez, F. (2015). A comprehensive sur-
vey on safe reinforcement learning. Journal of Ma-
chine Learning Research, 16(1):1437–1480.
Gwak, J. and Sim, K. M. (2010). Bayesian learning based
negotiation agents for supporting negotiation with in-
complete information. In World Congress on En-
gineering 2012. July 4-6, 2012. London, UK., vol-
ume 2188, pages 163–168. International Association
of Engineers.
Haberland, V., Miles, S., and Luck, M. (2012). Adaptive
negotiation for resource intensive tasks in grids. In
STAIRS, pages 125–136.
Hayek, F. A. (1945). The use of knowledge in society. The
American economic review, 35(4):519–530.
Kennan, J. and Wilson, R. (1993). Bargaining with pri-
vate information. Journal of Economic Literature,
31(1):45–104.
Kisiala, J. (2015). Conditional value-at-risk: Theory and
applications. arXiv preprint arXiv:1511.00140.
Konrad, K. A. and Morath, F. (2016). Bargaining with
incomplete information: Evolutionary stability in fi-
nite populations. Journal of Mathematical Economics,
65:118–131.
Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and
Graepel, T. (2017). Multi-agent reinforcement learn-
ing in sequential social dilemmas. In Proceedings of
the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, pages 464–473. International Foun-
dation for Autonomous Agents and Multiagent Sys-
tems.
Lerer, A. and Peysakhovich, A. (2017). Maintaining coop-
eration in complex social dilemmas using deep rein-
forcement learning. arXiv preprint arXiv:1707.01068.
Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pages 157–163. Elsevier.
Nash Jr, J. F. (1950). The bargaining problem. Economet-
rica: Journal of the Econometric Society, pages 155–
162.
Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2018).
Deep reinforcement learning for multi-agent systems:
A review of challenges, solutions and applications.
arXiv preprint arXiv:1812.11794.
Papaioannou, I. V., Roussaki, I. G., and Anagnostou, M. E.
(2008). Neural networks against genetic algorithms
for negotiating agent behaviour prediction. Web Intel-
ligence and Agent Systems: An International Journal,
6(2):217–233.
Rand, D. G., Tarnita, C. E., Ohtsuki, H., and Nowak, M. A.
(2013). Evolution of fairness in the one-shot anony-
mous ultimatum game. Proceedings of the National
Academy of Sciences, 110(7):2581–2586.
Roth, A. E. (2012). Axiomatic models of bargaining, vol-
ume 170. Springer Science & Business Media.
Samuelson, W. (1984). Bargaining under asymmetric infor-
mation. Econometrica: Journal of the Econometric
Society, pages 995–1005.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Tan, M. (1993). Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the
tenth international conference on machine learning,
pages 330–337.
Tuyls, K. and Now
´
e, A. (2005). Evolutionary game theory
and multi-agent reinforcement learning. The Knowl-
edge Engineering Review, 20(1):63–90.
Wang, W., Hao, J., Wang, Y., and Taylor, M. (2018). To-
wards cooperation in sequential prisoner’s dilemmas:
a deep multiagent reinforcement learning approach.
arXiv preprint arXiv:1803.00162.
Multi-agent Reinforcement Learning for Bargaining under Risk and Asymmetric Information
151