livering the internal market in electricity and making
the most of public intervention. Technical report, The
European Commission.
Ilic, D., da Silva, P. G., Karnouskos, S., and Griesemer,
M. (2012). An energy market for trading electricity
in smart grid neighbourhoods. In 6th IEEE Interna-
tional Conference on Digital Ecosystems and Tech-
nologies, DEST 2012, Campione d’Italia, Italy, June
18-20, 2012, pages 1–6.
Kok, J. K., Warmer, C. J., and Kamphuis, I. G. (2005).
Powermatcher: multiagent control in the electricity in-
frastructure. In 4rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2005), July 25-29, 2005, Utrecht, The Netherlands -
Special Track for Industrial Applications, pages 75–
82.
Lilliu, F., Loi, A., Reforgiato Recupero, D., Sisinni, M.,
and Vinyals, M. (2019a). An uncertainty-aware op-
timization approach for flexible loads of smart grid
prosumers: A use case on the cardiff energy grid. Sus-
tainable Energy, Grids and Networks, 20:100272.
Lilliu, F., Vinyals, M., Denysiuk, R., and Reforgiato Recu-
pero, D. (2019b). A novel payment scheme for trad-
ing renewable energy in smartgrid. In Proceedings of
the Tenth International Conference on Future Energy
Systems, e-Energy 2019, Phoenix, United States, June
25-28, 2019, page To appear.
Loni, A. and Parand, F. (2017). A survey of game theory
approach in smart grid with emphasis on cooperative
games. In 2017 IEEE International Conference on
Smart Grid and Smart Cities (ICSGSC), pages 237–
242.
Mihaylov, M., Jurado, S., Avellana, N., Razo-Zapata, I. S.,
Moffaert, K. V., Arco, L., Bezunartea, M., Grau, I.,
Ca
˜
nadas, A., and Now
´
e, A. (2015). SCANERGY: a
scalable and modular system for energy trading be-
tween prosumers. In Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2015, Istanbul, Turkey, May
4-8, 2015, pages 1917–1918.
Mihaylov, M., Jurado, S., Avellana, N., Van Moffaert, K.,
de Abril, I. M., and Now
´
e, A. (2014). Nrgcoin: Vir-
tual currency for trading of renewable energy in smart
grids. In European Energy Market (EEM), 2014 11th
International Conference on the, pages 1–6. IEEE.
Mihaylov, M., R
˘
adulescu, R., Razo-Zapata, I., Jurado, S.,
Arco, L., Avellana, N., and Now
´
e, A. (2019). Com-
paring stakeholder incentives across state-of-the-art
renewable support mechanisms. Renewable Energy,
131:689–699.
Nguyen, H. K., Song, J. B., and Han, Z. (2012). Demand
side management to reduce peak-to-average ratio us-
ing game theory in smart grid. In 2012 Proceed-
ings IEEE INFOCOM Workshops, Orlando, FL, USA,
March 25-30, 2012, pages 91–96.
Rad, A. H. M., Wong, V. W. S., Jatskevich, J., Schober, R.,
and Leon-Garcia, A. (2010). Autonomous demand-
side management based on game-theoretic energy
consumption scheduling for the future smart grid.
IEEE Trans. Smart Grid, 1(3):320–331.
Rosen, J. B. (1965). Existence and uniqueness of equilib-
rium points for concave n-person games. Economet-
rica, 33(3):520–534.
Saad, W., Han, Z., Poor, H. V., and Basar, T. (2012). Game-
theoretic methods for the smart grid: An overview
of microgrid systems, demand-side management, and
smart grid communications. IEEE Signal Process.
Mag., 29(5):86–105.
Sisinni, M., Sleiman, H., Vinyals, M., Oualmakran, Y.,
Pankow, Y., Grimaldi, I., Genesi, C., Espeche, J., Di-
bley, M., Yuce, B., Elshaafi, H., and McElveen, S.
(2016). D2.2 - mas
2
tering platform design document.
MAS
2
TERING public reports.
Soliman, H. M. and Leon-Garcia, A. (2014). Game-
theoretic demand-side management with storage de-
vices for the future smart grid. IEEE Trans. Smart
Grid, 5(3):1475–1485.
Peer-to-peer Energy Trading for Smart Energy Communities
49