REFERENCES
Amrin, A., Zarikas, V. and Spitas, C. (2018) ‘Reliability
analysis and functional design using Bayesian networks
generated automatically by an “Idea Algebra” frame-
work’, Reliability Engineering and System Safety. Else-
vier Ltd, 180 (July), pp. 211–225. doi: 10.1016/j. ress.
2018.07.020.
Bapin, Y. and Zarikas, V. (2014) ‘Probabilistic Method for
Estimation of Spinning Reserves in Multi-connected
Power Systems with Bayesian Network-based Re-
scheduling Algorithm’, Proceedings of the 11th Inter-
national Conference on Agents and Artificial Intelli-
gence, pp. 840–849. doi: 10.5220/ 0007577308400849.
Barton, D. N. et al. (2016) ‘Assessing ecosystem services
from multifunctional trees in pastures using Bayesian
belief networks’, Ecosystem Services, 18, pp. 165–174.
doi: 10.1016/j.ecoser.2016.03.002.
Barton, D. N. et al. (2016) ‘Diagnosing agrosilvopastoral
practices using Bayesian networks’, Agroforestry Sys-
tems, 91(2), pp. 325–334. doi: 10.1007/s10457-016-
9931-1.
Bhowmik, C. et al. (2017) ‘Optimal green energy planning
for sustainable development : A review’, Renewable
and Sustainable Energy Reviews. Elsevier Ltd, 71
(December 2016), pp. 796–813. doi: 10. 1016/ j.rser.
2016. 12.105.
Borunda, M. et al. (2016) ‘Bayesian networks in renewable
energy systems : A bibliographical survey’, Renewable
and Sustainable Energy Reviews. Elsevier, 62, pp. 32–
45. doi: 10.1016/j.rser.2016. 04.030.
Campos, L. M. De and Castellano, J. G. (2007) ‘Bayesian
network learning algorithms using structural re-
strictions’, 45, pp. 233–254. doi: 10.1016/ j.ijar. 2006.
06.009.
Cinar, D. and Kayakutlu, G. (2010) ‘Knowledge-Based
Systems Scenario analysis using Bayesian networks : A
case study in energy sector’, Knowledge-Based Sys-
tems. Elsevier B.V., 23(3), pp. 267–276. doi: 10.1016/
j.knosys. 2010.01.009.
Conrady, S., Jouffe, L. and Elwert, F. (2014) ‘Causality for
Policy Assessment and Impact Analysis Directed Acy-
clic Graphs and Bayesian Networks for Causal’, (No-
vember). doi: 10.13140/2.1. 2350. 1763.
Corani, G. and Scanagatta, M. (2016) ‘Environmental Mo-
delling & Software Air pollution prediction via multi-
label classification’, 80. doi: 10.1016/ j.envsoft.2016.
02.030.
Franco, C. et al. (2016) ‘Environmental Modelling & Soft-
ware A Bayesian Belief Network to assess rate of
changes in coral reef ecosystems’, Environmental Mo-
delling and Software. Elsevier Ltd, 80, pp. 132–142.
doi: 10.1016/j.envsoft.2016.02.029.
Gambelli, D. et al. (2017) ‘Third generation algae biofuels
in Italy by 2030
: A scenario analysis using Bayesian
networks’, 103(April 2016), pp. 165–178. doi:
10.1016/j.enpol.2017.01.013.
Gerstenberger, M. C. et al. (2015) ‘Bi-directional risk as-
sessment in carbon capture and storage with Bayesian
Networks’, International Journal of Greenhouse Gas
Control. Elsevier Ltd, 35, pp. 150–159. doi:
10.1016/j.ijggc. 2015. 01.010.
Gonzalez-Redin, J. et al. (2016) ‘Spatial Bayesian belief
networks as a planning decision tool for mapping eco-
system services trade-offs on forested landscapes’, En-
vironmental Research, 144, pp. 15-26. doi:
10.1016/j.envres.2015.11.009
Jha, S. K. (2019) ‘A comprehensive search for expert clas-
sification methods in disease diagnosis and prediction’,
(April 2018). doi: 10.1111 /exsy. 12343.
Kabir, S. and Papadopoulos, Y. (2019) ‘Applications of
Bayesian networks and Petri nets in safety, reliability,
and risk assessments : A review’, Safety Science. Else-
vier, 115(April 2018), pp. 154–175. doi: 10.1016/
j.ssci.2019.02.009.
Kameshwar, S. et al. (2019) ‘Probabilistic decision-support
framework for community resilience: Incorporating
multi-hazards, infrastructure interdependencies, and re-
silience goals in a Bayesian network’, Reliability Engi-
neering & System Safety, 191, 106568. doi:
10.1016/j.ress.2019.106568
Keshtkar, A. R. et al. (2013) ‘Application of Bayesian net-
works for sustainability assessment in catchment mod-
eling and management (Case study : The Hablehrood
river catchment)’, Ecological Modelling. Elsevier B.V.,
268, pp. 48–54. doi: 10.1016/ j.ecolmodel.2013.08.003.
Kim, J. et al. (2018) ‘Sustainable Technology Analysis of
Artificial Intelligence Using Bayesian and Social Net-
work Models’. doi: 10.3390/ su10010115.
Kumar, A. et al. (2010) ‘Renewable energy in India : Cur-
rent status and future potentials’, (October). doi:
10.1016/j.rser.2010.04.003.
Landuyt, D. et al. (2015) ‘Environmental Modelling &
Software a GIS plug-in for Bayesian belief networks :
Towards a transparent software framework to assess
and visualise uncertainties in ecosystem service map-
ping’, Environmental Modelling and Software. Elsevier
Ltd, 71, pp. 30–38. doi: 10.1016/ j.envsoft. 2015. 05.
002.
Liu, Z. and Callies, U. (2019) ‘Implications of using chem-
ical dispersants to combat oil spills in the German Bight
e Depiction by means of a Bayesian network *’, Envi-
ronmental Pollution. Elsevier Ltd, 248, pp. 609–620.
doi: 10.1016/j.envpol.2019. 02.063.
Marcos, D. et al. (2018) ‘Ecotoxicology and Environmental
Safety Assessing mercury pollution in Amazon River
tributaries using a Bayesian Network approach’, Eco-
toxicology and Environmental Safety. Elsevier Inc.,
166(June), pp. 354–358. doi: 10.1016/j.ecoenv. 2018.
09.099.
Martos, A. et al. (2016) ‘Towards successful environmental
performance of sustainable cities : Intervening sectors.
A review’, Renewable and Sustainable Energy Re-
views. Elsevier, 57, pp. 479–495. doi: 10.1016/ j.rser.
2015.12.095.
McLaughlin, D., and Reckhow, K. (2017) ‘A Bayesian net-
work assessment of macroinvertebrate responses to nu-
trients and other factors in streams of the Eastern Corn
Belt Plains, Ohio, USA’, Ecological Modelling, 345,
pp. 21-29. doi: 10.1016/j.ecolmodel.2016.12.004