peak laser power than in continuous wave mode. If
the frequency of the Doppler shift is equal to the in-
termode interval of the optical spectrum, the beat pe-
riod coincides with the interval between two adjacent
pulses. Thus, one can achieve the intensity of the
idler beam to be equal to zero at all times. A simi-
lar approach is used, for example, for stabilized AO-
modulation of ultrashort pulses (O. de Vries et al.,
2015).
ACKNOWLEDGEMENTS
The research was supported by Russian Foundation
for Basic Research (RFBR) under project 18-29-
20019.
REFERENCES
A. Dieulangard, J.-C. Kastelik, S. Dupont, and J. Gazalet
(2015). Acousto-optical tunable transmissive grating
beam splitter. Acta Phys. Pol. A, 127(1):66–68.
A. Goutzoulis and D. Pape, editors (1994). Design and Fab-
rication of Acousto-Optic Devices. Marcel Dekker,
New York.
A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Ei-
dam, S. H¨adrich, J. Rothhardt, J. Limpert, and A.
T¨unnermann (2013). 530 W, 1.3 mJ, four-channel
coherently combined femtosecond fiber chirped-pulse
amplification system. Opt. Lett., 38(13):2283–2285.
A. Yariv and P. Yeh (1984). Optical Waves in Crystals. Wi-
ley, New York.
B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G.
Steinmeyer (2011). Carrier-envelope phase stabiliza-
tion with sub-10 as residual timing jitter. Opt. Lett.,
36(21):4146–4148.
C. Grebing, S. Koke, and G. Steinmeyer (2009). Self-
referencing of optical frequency combs. In Con-
ference on Lasers and Electro-Optics/International
Quantum Electronics Conference. OSA Technical Di-
gest, page CTuK5. Optical Society of America.
C. Manzoni, O.D. M¨ucke, G. Cirmi, Sh. Fang, J. Moses,
Sh.-W. Huang, K.-H. Hong, G. Cerullo, and F.X.
K¨artner (2015). Coherent pulse synthesis: towards
sub-cycle optical waveforms. Laser Photonics Rev.,
9(2):129–171.
E.I. Gacheva, A.K. Poteomkin, S.Yu. Mironov, V.V. Ze-
lenogorskii, E.A. Khazanov, K.B. Yushkov, A.I.
Chizhikov, and V.Ya. Molchanov (2017). Fiber laser
with random-access pulse train profiling for a photoin-
jector driver. Photonics Res., 5(4):293–298.
F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu
(2017). Experimental demonstration of coherent com-
bining with tip/tilt control based on adaptive space-
to-fiber laser beam coupling. IEEE Photonics J.,
9(2):7102812.
F. L¨ucking, A. Assion, A. Apolonski, F. Krausz, and
G. Steinmeyer (2012). Long-term carrier-envelope-
phase-stable few-cycle pulses by use of the feed-
forward method. Opt. Lett., 37(11):2076–2078.
G.S. Rogozhnikov, V.V. Romanov, N.N. Rukavishnikov,
V.Ya. Molchanov, and K.B. Yushkov (2018). Inter-
ference of phase-shifted chirped laser pulses for se-
cure free-space optical communications. Appl. Optics,
57(10):C98–C102.
J.-C. Kastelik, J. Champagne, S. Dupont, and K.B. Yushkov
(2018). Wavelength characterization of an acousto-
optic notch filter for unpolarized near-infrared lights.
Appl. Optics, 57(10):C36–C41.
J.-C. Kastelik, K.B. Yushkov, S. Dupont, and V.B. Voloshi-
nov (2009). Cascaded acousto-optic system for
modulation of unpolarized light. Opt. Express,
17(15):12767–12776.
K.B. Yushkov and V.Ya. Molchanov (2011). Effect of
group velocity mismatch on acousto-optic interac-
tion of ultrashort laser pulses. Quantum Electron.,
41(12):1119–1120.
L.N. Magdich, K.B. Yushkov, and V.B. Voloshinov (2009).
Wide-aperture diffraction of unpolarized radiation in
a system of two acousto-optic filters. Quantum Elec-
tron., 39(4):347–352.
N.A. Koliada, B.N. Nyushkov, V.S. Pivtsov, A.S. Dy-
chkov, S.A. Farnosov, V.I. Denisov, and S.N. Bagayev
(2016). Stabilisation of a fibre frequency synthesiser
using acousto-optical and electro-optical modulators.
Quantum Electron., 46(12):1110–1112.
O. de Vries, T. Saule, M. Pl¨otner, F. L¨ucking, T. Ei-
dam, A. Hoffmann, A. Klenke, S. H¨adrich, J.
Limpert, S. Holzberger, T. Schreiber, R. Eberhardt,
I. Pupeza, and A. T¨unnermann (2015). Acousto-
optic pulse picking scheme with carrier-frequency-to-
pulse-repetition-rate synchronization. Opt. Express,
23(15):19586–19595.
O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eber-
hardt, J. Limpert, and A. T¨unnermann (2009). Aver-
age power of 1.1 kW from spectrally combined, fiber-
amplified, nanosecond-pulsed sources. Opt. Lett.,
34(10):1567–1569.
S.M. Redmond, D.J. Ripin, C.X. Yu, S.J. Augst, T.Y.
Fan, P.A. Thielen, J.E. Rothenberg, and G.D. Goodno
(2012). Diffractive coherent combining of a 2.5 kW
fiber laser array into a 1.9 kW Gaussian beam. Opt.
Lett., 37(14):2832–2834.
S.N. Antonov, A.V. Vainer, V.V. Proklov, and Y.G. Rezvov
(2007). Inverse acoustooptic problem: Coherent sum-
ming of optical beams into a single optical channel.
Tech. Phys., 52(5):610–615.
S.N. Bagayev, V.I. Trunov, E.V. Pestryakov, S.A. Frolov,
V.E. Leshchenko, A.E. Kokh, and V.A. Vasiliev
(2014). Super-intense femtosecond multichannel laser
system with coherent beam combining. Laser Phys.,
24(7):074016.
T.Y. Fan (2005). Laser beam combining for high-power,
high-radiance sources. IEEE J. Sel. Top. Quantum
Electron., 11(3):567–577.
V.B. Voloshinov and A.Yu. Tchernyatin (2000). Simulta-
neous up-shifted and down-shifted bragg diffraction