Table 2: Performance comparision in terms of cluster
validity indices on sclera traits.
Method Precision Recall
FCM 65.98 65.12
KFCM 67.43 66.96
SFCM 69.72 68.79
SKFCM 72.93 73.08
RSKFCM 85.21 80.21
GSK-FCM 85.89 80.23
Table 3: Performance comparision in terms of
segmentation on sclera traits.
Method V
pc
V
pe
V
xb
[1x10
-3
] V
fs
[-1x10
6
]
FCM 0.832
0.236 74.68
350.64
KFCM 0.848
0.225 72.19
353.68
SFCM 0.866
0.220 70.68
361.31
SKFCM 0.884
0.213 67.84
365.38
RSKFCM 0.921 0.192 60.34 387.13
GSK-FCM 0.931 0.167 59.65 390.67
5 CONCLUSION
This paper presents the Generalized Spatial Kernel-
Fuzzy C Means (GSK-FCM) clustering algorithm
which is capable of segmenting sclera images. The
proposed algorithm have overcome the drawbacks of
traditional FCM method by considering
neighbourhood information and using Gaussian
kernel distance measure. The inclusion of
neighbourhood information and use of kernel
function reduces the impact of noise which in turn
increases the results. This paper work has been
applied to sclera segmentation images, where in the
segmentation plays a crucial role for
recognition/identification purpose for future
researchers who deal in authentication of users using
sclera biometric trait. From the observations of the
results and its comparison with other methods the
proposed GSK-FCM performs better than the other
methods.
REFERENCES
Adams, R., & Bischof, L. (1994). Seeded region growing.
IEEE Transactions on pattern analysis and machine
intelligence, 16(6), 641-647.
Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A.,
& Moriarty, T. (2002). A modified fuzzy c-means
algorithm for bias field estimation and segmentation of
MRI data. IEEE transactions on medical imaging,
21(3), 193-199.
Ben-Dor, A., Shamir, R., & Yakhini, Z. (1999). Clustering
gene expression patterns. Journal of computational
biology, 6(3-4), 281-297.
Beveridge, J. R., Griffith, J., Kohler, R. R., Hanson, A. R.,
& Riseman, E. M. (1989). Segmenting images using
localized histograms and region merging. International
Journal of Computer Vision, 2(3), 311-347.
Bezdek, J. C. (1994). What is computational intelligence?
(No. CONF-9410335-). USDOE Pittsburgh Energy
Technology Center, PA (United States); Oregon State
Univ., Corvallis, OR (United States). Dept. of
Computer Science; Naval Research Lab., Washington,
DC (United States); Electric Power Research Inst., Palo
Alto, CA (United States); Bureau of Mines,
Washington, DC (United States).
Chen, C. W., Luo, J., & Parker, K. J. (1998). Image
segmentation via adaptive K-mean clustering and
knowledge-based morphological operations with
biomedical applications. IEEE transactions on image
processing, 7(12), 1673-1683.
Chen, D. Z. S. (2002). Fuzzy clustering using kernel
method. IEEE, Nanjing.
Chen, J. H., & Chen, C. S. (2002). Fuzzy kernel perceptron.
IEEE Transactions on Neural Networks, 13(6), 1364-
1373.
Das, A., Pal, U., Ferrer, M. A., & Blumenstein, M. (2016,
June). SSRBC 2016: Sclera segmentation and
recognition benchmarking competition. In 2016
International Conference on Biometrics (ICB) (pp. 1-
6). IEEE.
Despotović, I., Goossens, B., & Philips, W. (2015). MRI
segmentation of the human brain: challenges, methods,
and applications. Computational and mathematical
methods in medicine, 2015.
Hadjahmadi, A. H., Homayounpour, M. M., & Ahadi, S. M.
(2008, June). Robust weighted fuzzy c-means
clustering. In 2008 IEEE International Conference on
Fuzzy Systems (IEEE World Congress on
Computational Intelligence) (pp. 305-311). IEEE.
Jain, A., Hong, L., & Pankanti, S. (2000). Biometric
identification. Communications of the ACM, 43(2), 90-
98.
Joussen, A. M. (2001). Vascular plasticity–the role of the
angiopoietins in modulating ocular angiogenesis.
Graefe's Archive for Clinical and Experimental
Ophthalmology, 239(12), 972-975.
Koza, J. R. (1994). Genetic programming II: Automatic
discovery of reusable subprograms. Cambridge, MA,
USA, 13(8), 32.
Kumar, S. A., Harish, B. S., & Guru, D. S. (2015, March).
Segmenting MRI brain images using evolutionary
computation technique. In 2015 International
Conference on Cognitive Computing and Information
Processing (CCIP) (pp. 1-6). IEEE.
Liew, A. C., & Yan, H. (2001, June). An adaptive fuzzy
clustering algorithm for medical image segmentation.
In Proceedings International Workshop on Medical
Imaging and Augmented Reality (pp. 272-277). IEEE.
Ng, H. P., Ong, S. H., Foong, K. W. C., Goh, P. S., &
Nowinski, W. L. (2006, March). Medical image