5 CONCLUSION
This paper introduces an extension of the cognitive
map model called temporal cognitive map which al-
lows to temporally characterize concepts of the map.
To do this the temporal cognitive map is defined on a
temporal ontology which uses periodic intervals. This
paper proposes also an extension of CMQL, named
TCMQL, which allows to query a set of temporal cog-
nitive map and its new temporal features.
The temporal cognitive map model has been
implemented and tested into the VSPCC soft-
ware which provides tools to edit and use cog-
nitive maps. This software can also execute
TCMQL queries, it is available online (LeDorze
and Robert, 2014). The implementation uses the
temporal ontology owl-time to which is added a
class PeriodicInterval as a subclass of the main
class http://www.w3.org/2006/time#TemporalEntity
and comparison predicates as properties. owl-time
contains other temporal entities, such as instants or
Allen’s intervals. They could also be used once ade-
quate inference rules are added.
The temporal features introduced in this paper
come from real application needs for a better mod-
elling of the fishermen’s strategies and for a more
in-depth analysis in the Kifanlo project. The ACS
project that succeeds the Kifanlo project is currently
in progress, using these new tools.
REFERENCES
Axelrod, R. M. (1976). Structure of decision: the cognitive
maps of political elites. Princeton, NJ, USA.
Balbiani, P. and Osmani, A. (2000). A model for reasoning
about topologic relations between cyclic intervals. In
Principles of Knowledge Representation and Reason-
ing, pages 378–385.
Çelik, F. D., Ozesmi, U., and Akdogan, A. (2005). Par-
ticipatory ecosystem management planning at tuzla
lake (turkey) using fuzzy cognitive mapping. arXiv
preprint q-bio/0510015.
Chauvin, L., Genest, D., and Loiseau, S. (2009). Ontologi-
cal cognitive map. International Journal on Artificial
Intelligence Tools, 18(05):697–716.
Ermolayev, V., Batsakis, S., Keberle, N., Tatarintseva, O.,
and Antoniou, G. (2014). Ontologies of time: Re-
view and trends. International Journal of Computer
Science & Applications, 11(3).
Ermolayev, V., Keberle, N., Matzke, W.-E., and Sohnius, R.
(2008). Fuzzy time intervals for simulating actions.
In International United Information Systems Confer-
ence, pages 429–444. Springer.
Genest, D. and Loiseau, S. (2007). Modélisation, classi-
fication et propagation dans des réseaux d’influence.
Technique et Science Informatiques, 26.
Harris, S., Seaborne, A., and Prud’Hommeaux, E. (2013).
SPARQL 1.1 Query Language. W3C recommenda-
tion.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F.,
and Rudolph, S. (2009). Owl 2 web ontology language
primer. W3C recommendation, 27(1):123.
Hobbs, J. R. and Pan, F. (2006a). Time ontology in owl.
W3C working draft, 27:133.
Hobbs, J. R. and Pan, F. (2006b). Time ontology in owl.
W3C working draft, 27:133.
Kosko, B. (1986). Fuzzy cognitive maps. International
Journal of Man-Machines Studies, 24:65–75.
Ladkin, P. B. (1986). Time representation: A taxonomy of
internal relations. In AAAI, pages 360–366.
Le Dorze, A. (2013). Validation, synthèse et paramétrage
des cartes cognitives. PhD thesis, LERIA, Université
d’Angers, France.
Le Dorze, A., Chauvin, L., Garcia, L., Genest, D., and
Loiseau, S. (2012). Views and synthesis of cognitive
maps. In Ramsay, A. and Agre, G., editors, Artifi-
cial Intelligence: Methodology, Systems, and Appli-
cations, pages 119–124, Berlin, Heidelberg. Springer
Berlin Heidelberg.
LeDorze, A. and Robert, A. (2014).
https://sourcesup.renater.fr/projects/vspcc.
Louis, G. and Pirotte, A. (1982). A denotational definition
of the semantics of drc, a domain relational calculus.
In VLDB, pages 348–356.
Martin, B. L., Mintzes, J. J., and Clavijo, I. E. (2000).
Restructuring knowledge in biology: Cognitive pro-
cesses and metacognitive reflections. International
Journal of Science Education, 22(3):303–323.
Osmani, A. (1999). Introduction to reasoning about cyclic
intervals. In Multiple Approaches to Intelligent Sys-
tems, pages 698–706. Springer.
Park, K. S. and Kim, S. H. (1995). Fuzzy cognitive maps
considering time relationships. International Journal
of Human-Computer Studies, 42(2):157–168.
Pearl, J. (2014). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Elsevier.
Poveda-Villalón, M., Suárez-Figueroa, M. C., and Gómez-
Pérez, A. (2014). A pattern for periodic intervals. Se-
mantic Web Journal, pages 1–10.
Robert, A. (2019). http://www.info.univ-
angers.fr/pub/adrian/rules/rules.html.
Robert, A., Genest, D., and Loiseau, S. (2018). A query
language for cognitive maps. In International Confer-
ence on Artificial Intelligence: Methodology, Systems,
and Applications, pages 218–227. Springer.
Robert, A., Genest, D., and Loiseau, S. (2019). The taxo-
nomic cognitive map query language: A general ap-
proach to analyse cognitive maps. In 30th ICTAI,
pages 999–1006. IEEE.
Röhrig, R. (1994). A theory for qualitative spatial reasoning
based on order relations. In Proceedings of the Twelfth
AAAI National Conference on Artificial Intelligence,
AAAI’94, pages 1418–1423. AAAI Press.
Tolman, E. C. (1948). Cognitive maps in rats and men. The
Psychological Review, 55(4):189–208.
Temporal Cognitive Maps
67