Hearst, M. A. (1998). Support vector machines. IEEE In-
telligent Systems, 13(4):18–28.
Johnson, R. and Zhang, T. (2014). Effective use of word
order for text categorization with convolutional neural
networks. CoRR, abs/1412.1058.
Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multi-
label text classification for automated tag suggestion.
In Proceedings of the ECML/PKDD 2008 Discovery
Challenge.
Kim, Y. (2014a). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1746–1751.
Kim, Y. (2014b). Convolutional neural networks for sen-
tence classification. CoRR, abs/1408.5882.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. CoRR,
abs/1609.02907.
Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent con-
volutional neural networks for text classification. In
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA, pages 2267–2273.
Lanchantin, J., Sekhon, A., and Qi, Y. (2019). Neural
message passing for multi-label classification. CoRR,
abs/1904.08049.
Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1:
A new benchmark collection for text categorization
research. J. Mach. Learn. Res., 5:361–397.
Liu, J., Chang, W., Wu, Y., and Yang, Y. (2017). Deep learn-
ing for extreme multi-label text classification. In Pro-
ceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017,
pages 115–124.
Luaces, O., D
´
ıez, J., Barranquero, J., del Coz, J. J., and
Bahamonde, A. (2012). Binary relevance efficacy for
multilabel classification. Progress in Artificial Intelli-
gence, 1(4):303–313.
Mao, Y., Tian, J., Han, J., and Ren, X. (2019). Hierar-
chical text classification with reinforced label assign-
ment. CoRR, abs/1908.10419.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States.,
pages 3111–3119.
Nam, J., Kim, J., Loza Menc’ia, E., Gurevych, I., and
F
¨
urnkranz, J. (2014). Large-scale multi-label text
classification - revisiting neural networks. In Machine
Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2014, Nancy,
France, September 15-19, 2014. Proceedings, Part II,
pages 437–452.
Peng, H., Li, J., Gong, Q., Wang, S., He, L., Li, B., Wang,
L., and Yu, P. S. (2019). Hierarchical taxonomy-aware
and attentional graph capsule rcnns for large-scale
multi-label text classification. CoRR, abs/1906.04898.
Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song,
Y., and Yang, Q. (2018). Large-scale hierarchical text
classification with recursively regularized deep graph-
cnn. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018, pages 1063–1072.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL, pages
1532–1543.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Ramos, J. Using tf-idf to determine word relevance in doc-
ument queries.
Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011).
Classifier chains for multi-label classification. Ma-
chine Learning, 85(3):333–359.
Schapire, R. E. and Singer, Y. (2000). Boostexter: A
boosting-based system for text categorization. Ma-
chine Learning, 39(2/3):135–168.
Schwenk, H., Barrault, L., Conneau, A., and LeCun, Y.
(2017). Very deep convolutional networks for text
classification. In Proceedings of the 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics, EACL 2017, Valencia, Spain,
April 3-7, 2017, Volume 1: Long Papers, pages 1107–
1116.
Shen, T., Zhou, T., Long, G., Jiang, J., and Zhang, C.
(2018). Bi-directional block self-attention for fast
and memory-efficient sequence modeling. CoRR,
abs/1804.00857.
Sun, A. and Lim, E. (2001). Hierarchical text classification
and evaluation. In Proceedings of the 2001 IEEE In-
ternational Conference on Data Mining, 29 November
- 2 December 2001, San Jose, California, USA, pages
521–528.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Li
`
o,
P., and Bengio, Y. (2018). Graph attention networks.
In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.
Vural, V. and Dy, J. G. (2004). A hierarchical method for
multi-class support vector machines. In Proceedings
of the Twenty-first International Conference on Ma-
chine Learning, ICML ’04, pages 105–, New York,
NY, USA. ACM.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu,
ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence
504