REFERENCES
Assabie, Y. and Bigun, J. (2008). Writer-independent of-
fline recognition of handwritten ethiopic characters.
Proc. 11
th
ICFHR, pages 652–656.
Banerjee, P. and Chaudhuri, B. B. (2012). A system for
handwritten and machine-printed text separation in
bangla document images. In International Conference
on Frontiers in Handwriting Recognition (ICFHR),
pages 758–762. IEEE.
Belay, B., Habtegebrial, T., Liwicki, M., Belay, G., and
Stricker, D. (2019a). Amharic text image recognition:
Database, algorithm, and analysis. In International
Conference on Document Analysis and Recognition
(ICDAR). IEEE.
Belay, B., Habtegebrial, T., Liwicki, M., Belay, G., and
Stricker, D. (2019b). Factored convolutional neural
network for amharic character image recognition. In
IEEE International Conference on Image Processing
(ICIP), pages 2906–2910. IEEE.
Echi, A. K., Saidani, A., and Belaid, A. (2014). How to sep-
arate between machine-printed/handwritten and ara-
bic/latin words? ELCVIA: electronic letters on com-
puter vision and image analysis, 13(1):1–16.
Fan, K.-C., Wang, L.-S., and Tu, Y.-T. (1998). Classifica-
tion of machine-printed and handwritten texts using
character block layout variance. Pattern Recognition,
31(9):1275–1284.
Garreta, R. and Moncecchi, G. (2013). Learning scikit-
learn: machine learning in python. Packt Publishing
Ltd.
Gaspar, P., Carbonell, J., and Oliveira, J. L. (2012). On the
parameter optimization of support vector machines for
binary classification. Journal of integrative bioinfor-
matics, 9(3):33–43.
Guo, J. K. and Ma, M. Y. (2001). Separating handwrit-
ten material from machine printed text using hidden
markov models. In 6
th
International Conference on
Document Analysis and Recognition, pages 439–443.
IEEE.
Hastie, T., Tibshirani, r., and Friedman, J. (2001). The el-
ements of statistical learning. data mining, inference,
and prediction.
Kassa, D. and Hagras, H. (2018). An adaptive segmenta-
tion technique for the ancient ethiopian geez language
digital manuscripts. In 10th Computer Science and
Electronic Engineering (CEEC), pages 83–88. IEEE.
Kavallieratou, E., Stamatatos, S., and Antonopoulou, H.
(2004). Machine-printed from handwritten text dis-
crimination. In 9th International Workshop on Fron-
tiers in Handwriting Recognition, ICFHR-9, pages
312–316. IEEE.
Medhat and et al. (2018). Tmixt: A process flow for tran-
scribing mixed handwritten and machine-printed text.
In IEEE International Conference on Big Data. New-
castle University.
Meshesha, M. (2008). Recognition and Retrieval from Doc-
ument Image Collections. PhD thesis, IIT, Hyderabad,
India.
Mozaffari, S. and Bahar, P. (2012). Farsi/arabic handwrit-
ten from machine-printed words discrimination. In In-
ternational Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 698–703. IEEE.
Pal, U. and Chaudhuri, B. B. (2001). Machine-printed and
hand-written text lines identification. Pattern Recog-
nition Letters, 22(3-4):431–441.
Pardeshi, R., Hangarge, M., Doddamani, S., and Santosh,
K. (2016). Handwritten and machine printed text sep-
aration from kannada document images. In 10
th
Inter-
national Conference on Intelligent Systems and Con-
trol (ISCO), pages 1–4. IEEE.
Pathak, R. and Tewari, R. K. (2015). Distinction between
machine printed text and handwritten text in a docu-
ment. International Journal of Scientific Engineering
and Research (IJSER), 3(7):13–17.
Peng, X., Setlur, S., Govindaraju, V., and Sitaram, R.
(2013). Handwritten text separation from annotated
machine printed documents using markov random
fields. International Journal on Document Analysis
and Recognition (IJDAR), 16(1):1–16.
Peng, X., Setlur, S., Govindaraju, V., Sitaram, R., and Bhu-
vanagiri, K. (2009). Markov random field based text
identification from annotated machine printed docu-
ments. In 10
th
International Conference on Document
Analysis and Recognition., pages 431–435. IEEE.
Sahare, P, D. S. (2018). Separation of machine-printed and
handwritten texts in noisy documents using wavelet
transform. IETE Technical Review, pages 1–21.
Shalini Puri, S. P. S. (2019). An efficient devanagari char-
acter classification in printed and handwritten docu-
ments using svm. In International Conference on Per-
vasive Computing Advances and Applications.
Srivastava, R., Tewari, R. K., and Kant, S. (2015). Separa-
tion of machine printed and handwritten text for hindi
documents. International Research Journal of Engi-
neering and Technology (IRJET), 2(2):704–708.
Teferi, D. (1999). Optical character recognition of type-
written amharic text. Master’s thesis, Addis Ababa
University, Addis Ababa.
Thomas, B. (2008). The ocropus open source ocr system.
In Document Recognition and Retrieval XV, volume
6815, page 68150. International Society for Optics
and Photonics.
Trieu, S. T. and Lee, G. S. (2016). Machine printed and
handwritten text discrimination in korean document
images. Smart Media Journal, 5:1–5.
Xiao-Hui Li, F. Y. and Liu, C. (2018). Printed/handwritten
texts and graphics separation in complex documents
using conditional random fields. In 13th IAPR In-
ternational Workshop on Document Analysis Systems
(DAS), pages 145–150. IEEE.
Zhao, H., Hu, Y., and Zhang, J. (2017). Character recogni-
tion via a compact convolutional neural network. In
International Conference on Digital Image Comput-
ing: Techniques and Applications, pages 1–6. IEEE.
Zheng, Y., Li, H., and Doermann, D. (2004). Machine
printed text and handwriting identification in noisy
document images. IEEE transactions on pattern anal-
ysis and machine intelligence, 26(3):337–353.
Using Automatic Features for Text-image Classification in Amharic Documents
445