REFERENCES
Avella, P., Sassano, A. and Vasil'ev, I. 2007. Computational
study of large scale p-median problems. Mathematical
Programming, 109: pp. 89-114.
Brotcorne, L., Laporte, G., Semet, F. 2003. Ambulance
location and relocation models. European Journal of
Operational Research 147, pp. 451–463
Current, J., Daskin, M., Schilling, D. 2002. Discrete
network location models. In Drezner Z. (ed) et al.
Facility location. Applications and theory, Berlin,
Springer, pp 81-118
Daskin, M., S. 2015. The p-Median Problem. Location
Science, edited by G. Laporte, S. Nickel and F.
Saldanha da Gama, Springer, pp. 21-45
Doerner, K. F., et al. 2005. Heuristic Solution of an
Extended Double-Coverage Ambulance Location
Problem for Austria. Central European Journal of
operations research, Vol. 13, No 4, pp. 325-340
Elloumi, S., Labbé, M., Pochet, Y. 2004. A new formulation
and resolution method for the p-center problem.
INFORMS Journal on Computing 16, pp. 84-94
García, S., Labbé, M., Marín, A. 2011. Solving large p-
median problems with a radius formulation. INFORMS
Journal on Computing, Vol. 23, No 4, pp. 546-556
Gendreau, M., Potvin, J. 2010. Handbook of Metaheuristics,
Springer Science & Business Media, 648 p.
Guerriero, F., Miglionico, G., Olivito, F. 2016. Location
and reorganization problems: The Calabrian health care
system case. European Journal of Operational
Research 250, pp. 939-954
Gupta, A., Ong, Y. 2019. Memetic Computation: The
Mainspring of Knowledge Transfer in a Data-Driven
Optimization Era, Springer, 2019, 104 p.
Janáček, J. 2008. Approximate Covering Models of
Location Problems. In Lecture Notes in Management
Science: Proceedings of the 1st International
Conference ICAOR, Yerevan, Armenia, pp. 53-61
Janáček, J., Kvet, M. 2016. Sequential approximate
approach to the p-median problem. Computers &
industrial engineering, Vol. 94, pp. 83-92.
Janáček, J., Kvet, M. 2019. Usage of uniformly deployed
set for p-location min-sum problem with generalized
disutility. In SOR 2019: International symposium on
Operational Research, Bled, Slovenia, pp. 494-499
Jánošíková, Ľ., Žarnay, M. 2014. Location of emergency
stations as the capacitated p-median problem. In
International scientific conference: Quantitative
Methods in Economics-Multiple Criteria Decision
Making XVII, Virt, Slovakia
Jánošíková, Ľ. et al. 2019. An optimization and simulation
approach to emergency stations relocation. Central
European Journal of Operations Research, Vol. 27.
No. 3, pp. 737-758
Kvet, M., Janáček, J. 2019. Population diversity
maintenance using uniformly deployed set of p
-location
problem solutions. In SOR 2019: International
symposium on Operational Research, Bled, Slovenia,
pp. 354-359
Marianov, V., Serra, D. 2002. Location problems in the
public sector. In Drezner, Z. (Ed.). Facility location -
Applications and theory, Berlin: Springer, pp. 119-150
Reeves, C., R. 2010. Genetic Algorithms. Handbook of
Metaheuristics, edited by M. Gendreau and Jean-Yves
Potvin, Second Edition, Springer, pp. 109-139
Resende, M., G., C. 2004. A Hybrid Heuristic for the p-
Median Problem. Journal of Heuristics, 10, Kluwer
Academic Publishers, pp. 59-88
Moscato, P., Cotta, C. A 2010. Modern Introduction to
Memetic Algorithms. Handbook of Metaheuristics,
edited by M. Gendreau and Jean-Yves Potvin, Second
Edition, Springer, pp. 141-183
Reuter-Oppermann, M., van den Berg, P. L., Vile, J. L.
2017. Logistics for Emergency Medical Service
systems. Health Systems, Vol. 6, No 3, pp 187-208
Rybičková, A., Burketová, A., Mocková, D. 2016. Solution
to the lacating – routing problem using a genetic
algorithm. In SmaRTT Cities Symposiuum Prague,
Prague, pp. 1 - 6
Sastry, K., Goldberg, D. 2005. Genetic Algorithms. Search
Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, edited by E. K.
Burke, G. Kendall, Springer, pp. 97-125
Sayah, D., Irnich, S. 2016. A new compact formulation for
the discrete p-dispersion problem. European Journal of
Operational Research, Vol. 256, No 1, pp. 62-67