A study and an open task. In 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), pages 813–820. IEEE.
Feria, M., Balbin, J. P., and Bautista, F. M. (2018). Con-
structing a word similarity graph from vector based
word representation for named entity recognition.
arXiv preprint arXiv:1807.03012.
Gao, Y. and Lee, H. (2016). Local tiled deep networks
for recognition of vehicle make and model. Sensors,
16(2):226.
Harris, Z. S. (1954). Distributional structure. Word, 10(2-
3):146–162.
Hassan, A. and Mahmood, A. (2018). Convolutional recur-
rent deep learning model for sentence classification.
Ieee Access, 6:13949–13957.
Huang, B. and Carley, K. M. (2019). Parameterized con-
volutional neural networks for aspect level sentiment
classification. arXiv preprint arXiv:1909.06276.
Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).
A convolutional neural network for modelling sen-
tences. arXiv preprint arXiv:1404.2188.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent
convolutional neural networks for text classification.
In Twenty-ninth AAAI conference on artificial intelli-
gence.
LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999).
Object recognition with gradient-based learning. In
Shape, contour and grouping in computer vision,
pages 319–345. Springer.
Liao, S., Wang, J., Yu, R., Sato, K., and Cheng, Z. (2017).
Cnn for situations understanding based on sentiment
analysis of twitter data. Procedia computer science,
111:376–381.
Liu, B. (2012). Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1):1–167.
Liu, B. and Zhang, L. (2012). A survey of opinion mining
and sentiment analysis. In Mining text data, pages
415–463. Springer.
Ma, Y., Peng, H., and Cambria, E. (2018). Targeted
aspect-based sentiment analysis via embedding com-
monsense knowledge into an attentive lstm. In Thirty-
Second AAAI Conference on Artificial Intelligence.
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for sen-
timent analysis. In Proceedings of the 49th annual
meeting of the association for computational linguis-
tics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics.
Meila, M. and Heckerman, D. (2013). An experimen-
tal comparison of several clustering and initialization
methods. arXiv preprint arXiv:1301.7401.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mou, L., Men, R., Li, G., Xu, Y., Zhang, L., Yan, R.,
and Jin, Z. (2015). Natural language inference by
tree-based convolution and heuristic matching. arXiv
preprint arXiv:1512.08422.
Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng,
A. Y. (2010). Tiled convolutional neural networks. In
Advances in neural information processing systems,
pages 1279–1287.
Qiu, J.-L., Qiu, X.-Y., and Hu, K. (2018). Emotion recog-
nition based on gramian encoding visualization. In
International Conference on Brain Informatics, pages
3–12. Springer.
Rosenthal, S., Farra, N., and Nakov, P. (2017). Semeval-
2017 task 4: Sentiment analysis in twitter. In Proceed-
ings of the 11th international workshop on semantic
evaluation (SemEval-2017), pages 502–518.
Shin, B., Lee, T., and Choi, J. D. (2016). Lexicon inte-
grated cnn models with attention for sentiment analy-
sis. arXiv preprint arXiv:1610.06272.
Thet, T. T., Na, J.-C., and Khoo, C. S. (2010). Aspect-based
sentiment analysis of movie reviews on discussion
boards. Journal of information science, 36(6):823–
848.
Wang, B. and Liu, M. (2015). Deep learning for aspect-
based sentiment analysis. Stanford University report.
Wang, Z. and Oates, T. (2015). Encoding time series as
images for visual inspection and classification using
tiled convolutional neural networks. In Workshops at
the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence.
Wen, Y., Zhang, W., Luo, R., and Wang, J. (2016). Learn-
ing text representation using recurrent convolutional
neural network with highway layers. arXiv preprint
arXiv:1606.06905.
Xue, W. and Li, T. (2018). Aspect based sentiment analy-
sis with gated convolutional networks. arXiv preprint
arXiv:1805.07043.
Yang, Y. and Eisenstein, J. (2017). Overcoming language
variation in sentiment analysis with social attention.
Transactions of the Association for Computational
Linguistics, 5:295–307.
Yin, W., Kann, K., Yu, M., and Sch
¨
utze, H. (2017). Com-
parative study of cnn and rnn for natural language pro-
cessing. arXiv preprint arXiv:1702.01923.
Zhang, W., Xu, H., and Wan, W. (2012). Weakness finder:
Find product weakness from chinese reviews by using
aspects based sentiment analysis. Expert Systems with
Applications, 39(11):10283–10291.
Zhang, Y., Roller, S., and Wallace, B. (2016). Mgnc-cnn:
A simple approach to exploiting multiple word em-
beddings for sentence classification. arXiv preprint
arXiv:1603.00968.
Zhang, Y. and Wallace, B. (2015). A sensitivity analysis
of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint
arXiv:1510.03820.
Hybrid Tiled Convolutional Neural Networks (HTCNN) Text Sentiment Classification
513